Improvement of drought tolerance in rice using line X tester mating design and biochemical molecular markers

Author:

El-Mouhamady Almoataz Bellah Ali,Gad Abdul Aziz M.,Karim Ghada S. A. Abdel

Abstract

Abstract Background Water stress, specifically the limited water resources needed to grow strategic crops, especially rice, poses a great threat to crop productivity. So, it was imperative that scientists all work together to try genetically improving the rice for drought tolerance in light of these environmental challenges. The aim of this study is trying to know the genetic behavior responsible for water-deficit tolerance in rice genotypes but at the molecular level. Moreover, this attempt will be an important leap in the process of genetic improvement in rice for water stress tolerance in Egypt. Results Twenty-three rice genotypes including eight parents and their fifteen F1 crosses or (the first hybrid generation) by line X tester analysis were evaluated for water stress tolerance during two experiments (the control and drought experiment) besides some molecular–biochemical studies for eight parents and the highest selected five crosses for water stress tolerance. The research revealed that five rice crosses out of fifteen hybrids were highly tolerant to water stress compared to the normal conditions. Data of biochemical markers indicated the presence of bands that are considered as molecular genetic markers for water-deficit tolerance in some rice genotypes, and this is the scientific progress achieved in this research. This was evident by increasing the density and concentration of SDS-protein electrophoresis besides enhancing the activities of peroxidase (POD) and polyphenol oxidase (PPO) under water-deficit conditions, which confirmed the tolerance of drought stress in the eight rice genotypes and the best five crosses from the first hybrid generation. Conclusion The five promising and superior rice hybrids showed an unparalleled tolerance to water stress in all evaluated traits under water stress treatment compared to the standard experiment. Also, biochemical and molecular parameters evidence confirmed the existence of unquestionable evidence that it represents the main nucleus for producing rice lines tolerated for drought stress under Egyptian conditions.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference93 articles.

1. Abdel Sattar AA, El-Mouhamady AA (2012) Genetic analysis and molecular markers for yield and its components traits in faba bean (Vicia Faba L.). Aus J of Basic & Applied Sci 6:458–466

2. Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant Breed 46:27–34

3. Abo-Hamed SA, El-Mouhamady AA, Madkour MA (2016) Study the resistance of water shortage in wheat through root traits and half diallel analysis under normal and drought conditions. J of Enviro Sci 45:247–253

4. Ahmadi SAK, Ebadi A, Jahanbakhsh S, Daneshian J, Siadat SA (2015) Changes in enzymatic and nonenzymatic antioxidant defense mechanisms of canola seedlings at different drought stress and nitrogen levels. Turkish J of Agric and Fore 39:601–612

5. Al-Kordy MA, Ibrahim HM, El-Mouhamady AA, Abdel-Rahman HM (2019) Genetic stability analysis and molecular depiction in elite entries of rice (Oryza Sativa L.). Bull of the Nat Res Cen 43:1–15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3