Author:
Buttler Carmen A.,Ramirez Daniel,Dowell Robin D.,Chuong Edward B.
Abstract
Abstract
Background
Despite their origins as selfish parasitic sequences, some transposons in the human genome have been co-opted to serve as regulatory elements, contributing to the evolution of transcriptional networks. Most well-characterized examples of transposon-derived regulatory elements derive from endogenous retroviruses (ERVs), due to the intrinsic regulatory activity of proviral long terminal repeat regions. However, one subclass of transposable elements, the Long Interspersed Nuclear Elements (LINEs), have been largely overlooked in the search for functional regulatory transposons, and considered to be broadly epigenetically repressed.
Results
We examined the chromatin state of LINEs by analyzing epigenomic data from human immune cells. Many LINEs are marked by the repressive H3K9me3 modification, but a subset exhibits evidence of enhancer activity in human immune cells despite also showing evidence of epigenetic repression. We hypothesized that these competing forces of repressive and activating epigenetic marks might lead to inducible enhancer activity. We investigated a specific L1M2a element located within the first intron of Interferon Alpha/Beta Receptor 1 (IFNAR1). This element shows epigenetic signatures of B cell-specific enhancer activity, despite being repressed by the Human Silencing Hub (HUSH) complex. CRISPR deletion of the element in B lymphoblastoid cells revealed that the element acts as an enhancer that regulates both steady state and interferon-inducible expression of IFNAR1.
Conclusions
Our study experimentally demonstrates that an L1M2a element was co-opted to function as an interferon-inducible enhancer of IFNAR1, creating a feedback loop wherein IFNAR1 is transcriptionally upregulated by interferon signaling. This finding suggests that other LINEs may exhibit cryptic cell type-specific or context-dependent enhancer activity. LINEs have received less attention than ERVs in the effort to understand the contribution of transposons to the regulatory landscape of cellular genomes, but these are likely important, lineage-specific players in the rapid evolution of immune system regulatory networks and deserve further study.
Funder
National Institutes of Health
Alfred P. Sloan Foundation
David and Lucile Packard Foundation
Boettcher Foundation
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献