Deep sequencing reveals new roles for MuB in transposition immunity and target-capture, and redefines the insular Ter region of E. coli

Author:

Walker David M.,Harshey Rasika M.ORCID

Abstract

Abstract Background The target capture protein MuB is responsible for the high efficiency of phage Mu transposition within the E. coli genome. However, some targets are off-limits, such as regions immediately outside the Mu ends (cis-immunity) as well as the entire ~ 37 kb genome of Mu (Mu genome immunity). Paradoxically, MuB is responsible for cis-immunity and is also implicated in Mu genome immunity, but via different mechanisms. This study was undertaken to dissect the role of MuB in target choice in vivo. Results We tracked Mu transposition from six different starting locations on the E. coli genome, in the presence and absence of MuB. The data reveal that Mu’s ability to sample the entire genome during a single hop in a clonal population is independent of MuB, and that MuB is responsible for cis-immunity, plays a minor role in Mu genome immunity, and facilitates insertions into transcriptionally active regions. Unexpectedly, transposition patterns in the absence of MuB have helped extend the boundaries of the insular Ter segment of the E. coli genome. Conclusions The results in this study demonstrate unambiguously the operation of two distinct mechanisms of Mu target immunity, only one of which is wholly dependent on MuB. The study also reveals several interesting and hitherto unknown aspects of Mu target choice in vivo, particularly the role of MuB in facilitating the capture of promoter and translation start site targets, likely by displacing macromolecular complexes engaged in gene expression. So also, MuB facilitates transposition into the restricted Ter region of the genome.

Funder

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology

Reference58 articles.

1. Symonds N, Toussaint A, Van de Putte P, Howe MM. Phage Mu. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; 1987.

2. Craig NL. Mobile DNA III. Washington: ASM Press; 2015.

3. Harshey RM. In: Craig NL, editor. Transposable phage Mu. In Mobile DNA III. Washington: ASM press; 2015. p. 669–91.

4. Mizuuchi K. Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem. 1992;61:1011–51.

5. Nakai H, Doseeva V, Jones JM. Handoff from recombinase to replisome: insights from transposition. Proc Natl Acad Sci U S A. 2001;98:8247–54.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3