Variation in base composition underlies functional and evolutionary divergence in non-LTR retrotransposons

Author:

Ruggiero Robert P.,Boissinot Stéphane

Abstract

Abstract Background Non-LTR retrotransposons often exhibit base composition that is markedly different from the nucleotide content of their host’s gene. For instance, the mammalian L1 element is AT-rich with a strong A bias on the positive strand, which results in a reduced transcription. It is plausible that the A-richness of mammalian L1 is a self-regulatory mechanism reflecting a trade-off between transposition efficiency and the deleterious effect of L1 on its host. We examined if the A-richness of L1 is a general feature of non-LTR retrotransposons or if different clades of elements have evolved different nucleotide content. We also investigated if elements belonging to the same clade evolved towards different base composition in different genomes or if elements from different clades evolved towards similar base composition in the same genome. Results We found that non-LTR retrotransposons differ in base composition among clades within the same host but also that elements belonging to the same clade differ in base composition among hosts. We showed that nucleotide content remains constant within the same host over extended period of evolutionary time, despite mutational patterns that should drive nucleotide content away from the observed base composition. Conclusions Our results suggest that base composition is evolving under selection and may be reflective of the long-term co-evolution between non-LTR retrotransposons and their host. Finally, the coexistence of elements with drastically different base composition suggests that these elements may be using different strategies to persist and multiply in the genome of their host.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3