Flood modelling for cities using Cloud computing

Author:

Glenis Vassilis,McGough Andrew Stephen,Kutija Vedrana,Kilsby Chris,Woodman Simon

Abstract

Abstract Urban flood risk modelling is a highly topical example of intensive computational processing. Such processing is increasingly required by a range of organisations including local government, engineering consultancies and the insurance industry to fulfil statutory requirements and provide professional services. As the demands for this type of work become more common, then ownership of high-end computational resources is warranted but if use is more sporadic and with tight deadlines then the use of Cloud computing could provide a cost-effective alternative. However, uptake of the Cloud by such organisations is often thwarted by the perceived technical barriers to entry. In this paper we present an architecture that helps to simplify the process of performing parameter sweep work on an Infrastructure as a Service Cloud. A parameter sweep version of the urban flood modelling, analysis and visualisation software “CityCat” was developed and deployed to estimate spatial and temporal flood risk at a whole city scale – far larger than had previously been possible. Performing this work on the Cloud allowed us access to more computing power than we would have been able to purchase locally for such a short time-frame (∼21 months of processing in a single calendar month). We go further to illustrate the considerations, both functional and non-functional, which need to be addressed if such an endeavour is to be successfully achieved.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference25 articles.

1. Hey T, Tansley S, Tolle K (Eds): The Fourth Paradigm. 2009.http://research.microsoft.com/en-us/collaboration/fourthparadigm/ Data-Intensive Scientific Discovery. Redmond, Washington. Microsoft Research.

2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M: A view of Cloud computing. Commun ACM 2010, 53(4):50–58. 10.1145/1721654.1721672

3. McGough AS, Lee W, Das S: A standards based approach to enabling legacy applications on the Grid. Future Generation Comput Syst 2008, 24(7):731–743. http://www.sciencedirect.com/science/article/pii/S0167739X08000095 10.1016/j.future.2008.02.004

4. Wei Yan T Elsevier Oceanography Series, vol 55. In Shallow water hydrodynamics. Elsevier, Amsterdam; 1992.

5. Toro EF: Shock-capturing methods for free-surface shallow flows. John Wiley & Sons, Chichester; 2001.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3