HSF1 is involved in suppressing A1 phenotype conversion of astrocytes following spinal cord injury in rats

Author:

Li Lilan,Li Yu,He Bingqiang,Li Hui,Ji Huiyuan,Wang Yingjie,Zhu Zhenjie,Hu Yuming,Zhou Yue,Yang Ting,Sun Chunshuai,Yuan Ying,Wang YongjunORCID

Abstract

Abstract Background Two activation states of reactive astrocytes termed A1 and A2 subtypes emerge at the lesion sites following spinal cord injury (SCI). A1 astrocytes are known to be neurotoxic that participate in neuropathogenesis, whereas A2 astrocytes have been assigned the neuroprotective activity. Heat shock transcription factor 1 (HSF1) plays roles in protecting cells from stress-induced apoptosis and in controlling inflammatory activation. It is unknown whether HSF1 is involved in suppressing the conversion of A1 astrocytes following SCI. Methods A contusion model of the rat spinal cord was established, and the correlations between HSF1 expression and onset of A1 and A2 astrocytes were assayed by Western blot and immunohistochemistry. 17-AAG, the agonist of HSF1, was employed to treat the primary cultured astrocytes following a challenge by an A1-astrocyte-conditioned medium (ACM) containing 3 ng/ml of IL-1α, 30 ng/ml of TNF-α, and 400 ng/ml of C1q for induction of the A1 subtype. The effects of 17-AAG on the phenotype conversion of astrocytes, as well as underlying signal pathways, were examined by Western blot or immunohistochemistry. Results The protein levels of HSF1 were significantly increased at 4 days and 7 days following rat SCI, showing colocalization with astrocytes. Meanwhile, C3-positive A1 astrocytes were observed to accumulate at lesion sites with a peak at 1 day and 4 days. Distinctively, the S100A10-positive A2 subtype reached its peak at 4 days and 7 days. Incubation of the primary astrocytes with ACM markedly induced the conversion of the A1 phenotype, whereas an addition of 17-AAG significantly suppressed such inducible effects without conversion of the A2 subtype. Activation of HSF1 remarkably inhibited the activities of MAPKs and NFκB, which was responsible for the regulation of C3 expression. Administration of 17-AAG at the lesion sites of rats was able to reduce the accumulation of A1 astrocytes. Conclusion Collectively, these data reveal a novel mechanism of astrocyte phenotype conversion following SCI, and HSF1 plays key roles in suppressing excessive increase of neurotoxic A1 astrocytes.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

the China Postdoctoral Science Foundation

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3