The effects of splenectomy in murine models of ischemic stroke: a systematic review and meta-analysis

Author:

Sternak Marko,Glasnović Anton,Josić Paula,Romić Dominik,Gajović Srećko

Abstract

Abstract Background The spleen, a substantial reservoir of non-differentiated monocytes, may play a crucial role in the pathophysiology of post-ischemic inflammation and influence outcomes after ischemic stroke. Aim of the study To analyze splenectomy as a preclinical intervention in murine models of ischemic stroke. Methods Following systematic searches of PubMed, Scopus and Web of Science, a qualitative synthesis of study characteristics was performed, and the effect of splenectomy estimated by a three-level random-effects meta-analysis of infarct volumes and a conventional two-level random-effects meta-analysis of neurological deficit scores. Results Database searches identified a total of 14 studies, 13 of which were used for meta-analysis. The ischemic lesion volumes were reduced in splenectomized animals compared to the control groups (difference in standardized mean differences: − 1.42; 95% CI [− 1.98, − 0.85]; 95% PI [− 2.03, − 0.80]; I2(2) = 19.04%; 95% CI [0.00%, 65.49%]; I2(3) = 47.24%; 95% CI [0.00%, 85.23%]) and neurological deficit scores were improved (− 1.20; 95% CI [− 2.20, − 0.20]; 95% PI [− 4.58, 2.18]; I2 = 77.5%; 95% CI [50.0%, 89.9%]). A subgroup analysis for infarct volumes showed that splenectomy performed prior to ischemia achieved a higher reduction of the ischemic lesion than when splenectomy was performed immediately prior or after stroke. Although the overall effect size of splenectomy could be classified as large, there was a significant presence of risks of bias, study heterogeneity, and a potential presence of publication bias. Conclusion Despite limitations related to heterogeneity, risks of bias, and potential publication bias, this meta-analysis points to the spleen and its functional cell populations as promising targets for the therapeutic modulation of post-stroke inflammation.

Funder

European Regional Development Fund

Hrvatska Zaklada za Znanost

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3