GSDMD gene knockout alleviates hyperoxia-induced hippocampal brain injury in neonatal mice

Author:

Challa Naga Venkata Divya,Chen Shaoyi,Yuan Huijun,Duncan Matthew R.,Moreno William Javier,Bramlett Helen,Dietrich W. Dalton,Benny Merline,Schmidt Augusto F.,Young Karen,Wu Shu

Abstract

Abstract Background Neonatal hyperoxia exposure is associated with brain injury and poor neurodevelopment outcomes in preterm infants. Our previous studies in neonatal rodent models have shown that hyperoxia stimulates the brain’s inflammasome pathway, leading to the activation of gasdermin D (GSDMD), a key executor of pyroptotic inflammatory cell death. Moreover, we found pharmacological inhibition of caspase-1, which blocks GSDMD activation, attenuates hyperoxia-induced brain injury in neonatal mice. We hypothesized that GSDMD plays a pathogenic role in hyperoxia-induced neonatal brain injury and that GSDMD gene knockout (KO) will alleviate hyperoxia-induced brain injury. Methods Newborn GSDMD knockout mice and their wildtype (WT) littermates were randomized within 24 h after birth to be exposed to room air or hyperoxia (85% O2) from postnatal days 1 to 14. Hippocampal brain inflammatory injury was assessed in brain sections by immunohistology for allograft inflammatory factor 1 (AIF1) and CD68, markers of microglial activation. Cell proliferation was evaluated by Ki-67 staining, and cell death was determined by TUNEL assay. RNA sequencing of the hippocampus was performed to identify the transcriptional effects of hyperoxia and GSDMD-KO, and qRT-PCR was performed to confirm some of the significantly regulated genes. Results Hyperoxia-exposed WT mice had increased microglia consistent with activation, which was associated with decreased cell proliferation and increased cell death in the hippocampal area. Conversely, hyperoxia-exposed GSDMD-KO mice exhibited considerable resistance to hyperoxia as O2 exposure did not increase AIF1 + , CD68 + , or TUNEL + cell numbers or decrease cell proliferation. Hyperoxia exposure differentially regulated 258 genes in WT and only 16 in GSDMD-KO mice compared to room air-exposed WT and GSDMD-KO, respectively. Gene set enrichment analysis showed that in the WT brain, hyperoxia differentially regulated genes associated with neuronal and vascular development and differentiation, axonogenesis, glial cell differentiation, hypoxia-induced factor 1 pathway, and neuronal growth factor pathways. These changes were prevented by GSDMD-KO. Conclusions GSDMD-KO alleviates hyperoxia-induced inflammatory injury, cell survival and death, and alterations of transcriptional gene expression of pathways involved in neuronal growth, development, and differentiation in the hippocampus of neonatal mice. This suggests that GSDMD plays a pathogenic role in preterm brain injury, and targeting GSDMD may be beneficial in preventing and treating brain injury and poor neurodevelopmental outcomes in preterm infants.

Funder

NIH

Batchelor Award

Project Newborn-University of Miami

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3