Oligodendrocyte-specific Argonaute profiling identifies microRNAs associated with experimental autoimmune encephalomyelitis

Author:

Ma Qin,Matsunaga Atsuko,Ho Brenda,Oksenberg Jorge R.,Didonna AlessandroORCID

Abstract

Abstract Background MicroRNAs (miRNAs) belong to a class of evolutionary conserved, non-coding small RNAs with regulatory functions on gene expression. They negatively affect the expression of target genes by promoting either RNA degradation or translational inhibition. In recent years, converging studies have identified miRNAs as key regulators of oligodendrocyte (OL) functions. OLs are the cells responsible for the formation and maintenance of myelin in the central nervous system (CNS) and represent a principal target of the autoimmune injury in multiple sclerosis (MS). Methods MiRAP is a novel cell-specific miRNA affinity-purification technique which relies on genetically tagging Argonaut 2 (AGO2), an enzyme involved in miRNA processing. Here, we exploited miRAP potentiality to characterize OL-specific miRNA dynamics in the MS model experimental autoimmune encephalomyelitis (EAE). Results We show that 20 miRNAs are differentially regulated in OLs upon transition from pre-symptomatic EAE stages to disease peak. Subsequent in vitro differentiation experiments demonstrated that a sub-group of them affects the OL maturation process, mediating either protective or detrimental signals. Lastly, transcriptome profiling highlighted the endocytosis, ferroptosis, and FoxO cascades as the pathways associated with miRNAs mediating or inhibiting OL maturation. Conclusions Altogether, our work supports a dual role for miRNAs in autoimmune demyelination. In particular, the enrichment in miRNAs mediating pro-myelinating signals suggests an active involvement of these non-coding RNAs in the homeostatic response toward neuroinflammatory injury.

Funder

Fondazione Italiana Sclerosi Multipla

National Multiple Sclerosis Society

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3