SNHG15 is a negative regulator of inflammation by mediating TRAF2 ubiquitination in stroke-induced immunosuppression

Author:

Sun Huiling,Li Shuo,Xu Zhaohan,Liu Chengfang,Gong Pengyu,Deng QiwenORCID,Yan Fuling

Abstract

Abstract Background Abnormal expression of long noncoding RNAs (lncRNAs) has been reported in the acute stage of acute ischemic stroke (AIS). This study aimed to explore differential lncRNA expression in the subpopulations of peripheral blood mononuclear cells (PBMCs) from AIS patients and further evaluate its underlying mechanisms in stroke-induced immunosuppression. Methods We reanalyzed lncRNA microarray data and investigated abnormally expressed lncRNAs in the subpopulations of PBMCs by magnetic cell sorting and real-time quantitative PCR. The potential mechanism of small nucleolar RNA host gene 15 (SNHG15) was explored through in vitro and in vivo approaches. Results The stroke-induced SNHG15 acted as a checkpoint to inhibit peripheral inflammatory responses. Functional studies showed that SNHG15 promoted M2 macrophage polarization. Mechanistically, SNHG15 expression was dysregulated through the Janus kinase (JAK)-signal transducer and activator of transcription 6 (STAT6) signaling pathway. SNHG15, localized in the cytoplasm, interfered with K63-linked ubiquitination of tumor necrosis factor receptor-associated factor 2 and thereby repressed the activation of mitogen-activated protein kinase and nuclear factor kappa-B signaling pathways and prevented the production of proinflammatory cytokines. Administration of an adenovirus targeting SNHG15 improved stroke-induced immunosuppression in mice. Conclusions This study identified SNHG15 as a negative regulator of inflammation in stroke-induced immunosuppression, suggesting it as a novel biomarker and therapeutic target in stroke-associated infection. Trial registration ClinicalTrials.gov NCT04175691. Registered November 25, 2019, https://www.clinicaltrials.gov/ct2/show/NCT04175691.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3