Author:
del Pilar Carlos,Garrido-Matilla Lucía,del Pozo-Filíu Lucía,Lebrón-Galán Rafael,Arias Raúl F.,Clemente Diego,Alonso José Ramón,Weruaga Eduardo,Díaz David
Abstract
Abstract
Background
Myeloid-derived suppressor cells (MDSCs) constitute a recently discovered bone-marrow-derived cell type useful for dealing with neuroinflammatory disorders. However, these cells are only formed during inflammatory conditions from immature myeloid cells (IMCs) that acquire immunosuppressive activity, thus being commonly gathered from diseased animals. Then, to obtain a more clinically feasible source, we characterized IMCs directly derived from healthy bone marrow and proved their potential immunosuppressive activity under pathological conditions in vitro. We then explored their neuroprotective potential in a model of human cerebellar ataxia, the Purkinje Cell Degeneration (PCD) mouse, as it displays a well-defined neurodegenerative and neuroinflammatory process that can be also aggravated by invasive surgeries.
Methods
IMCs were obtained from healthy bone marrow and co-cultured with activated T cells. The proliferation and apoptotic rate of the later were analyzed with Tag-it Violet. For in vivo studies, IMCs were transplanted by stereotactic surgery into the cerebellum of PCD mice. We also used sham-operated animals as controls of the surgical effects, as well as their untreated counterparts. Motor behavior of mice was assessed by rotarod test. The Purkinje cell density was measured by immunohistochemistry and cell death assessed with the TUNEL technique. We also analyzed the microglial phenotype by immunofluorescence and the expression pattern of inflammation-related genes by qPCR. Parametric tests were applied depending on the specific experiment: one or two way ANOVA and Student’s T test.
Results
IMCs were proven to effectively acquire immunosuppressive activity under pathological conditions in vitro, thus acting as MDSCs. Concerning in vivo studios, sham-operated PCD mice suffered detrimental effects in motor coordination, Purkinje cell survival and microglial activation. After intracranial administration of IMCs into the cerebellum of PCD mice, no special benefits were detected in the transplanted animals when compared to untreated mice. Nonetheless, this transplant almost completely prevented the impairments caused by the surgery in PCD mice, probably by the modulation of the inflammatory patterns.
Conclusions
Our work comprise two main translational findings: (1) IMCs can be directly used as they behave as MDSCs under pathological conditions, thus avoiding their gathering from diseased subjects; (2) IMCs are promising adjuvants when performing neurosurgery.
Funder
Ministerio de Economía y Competitividad
Centro en Red de Medicina Regenerativa y Terapia celular de Castilla y León
Consejería de Educación, Junta de Castilla y León
Universidad de Salamanca
Instituto de Salud Carlos III
Ministerio de Ciencia, Innovación y Universidades
Spanish Government
Publisher
Springer Science and Business Media LLC