Microglial inflammation after chronic spinal cord injury is enhanced by reactive astrocytes via the fibronectin/β1 integrin pathway

Author:

Yoshizaki Shingo,Tamaru Tetsuya,Hara Masamitsu,Kijima Ken,Tanaka Masatake,Konno Dai-jiro,Matsumoto Yoshihiro,Nakashima Yasuharu,Okada Seiji

Abstract

Abstract Background After spinal cord injury (SCI), glial scarring is mainly formed around the lesion and inhibits axon regeneration. Recently, we reported that anti-β1 integrin antibody (β1Ab) had a therapeutic effect on astrocytes by preventing the induction of glial scar formation. However, the cellular components within the glial scar are not only astrocytes but also microglia, and whether or not β1Ab treatment has any influence on microglia within the glial scar remains unclear. Methods To evaluate the effects of β1Ab treatment on microglia within the glial scar after SCI, we applied thoracic contusion SCI to C57BL/6N mice, administered β1Ab in the sub-acute phase, and analyzed the injured spinal cords with immunohistochemistry in the chronic phase. To examine the gene expression in microglia and glial scars, we selectively collected microglia with fluorescence-activated cell sorting and isolated the glial scars using laser-captured microdissection (LMD). To examine the interaction between microglia and astrocytes within the glial scar, we stimulated BV-2 microglia with conditioned medium of reactive astrocytes (RACM) in vitro, and the gene expression of TNFα (pro-inflammatory M1 marker) was analyzed via quantitative polymerase chain reaction. We also isolated both naïve astrocytes (NAs) and reactive astrocytes (RAs) with LMD and examined their expression of the ligands for β1 integrin receptors. Statistical analyses were performed using Wilcoxon’s rank-sum test. Results After performing β1Ab treatment, the microglia were scattered within the glial scar and the expression of TNFα in both the microglia and the glial scar were significantly suppressed after SCI. This in vivo alteration was attributed to fibronectin, a ligand of β1 integrin receptors. Furthermore, the microglial expression of TNFα was shown to be regulated by RACM as well as fibronectin in vitro. We also confirmed that fibronectin was secreted by RAs both in vitro and in vivo. These results highlighted the interaction mediated by fibronectin between RAs and microglia within the glial scar. Conclusion Microglial inflammation was enhanced by RAs via the fibronectin/β1 integrin pathway within the glial scar after SCI. Our results suggested that β1Ab administration had therapeutic potential for ameliorating both glial scar formation and persistent neuroinflammation in the chronic phase after SCI.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3