Spatio-temporal expression profile of NGF and the two-receptor system, TrkA and p75NTR, in experimental autoimmune encephalomyelitis

Author:

Delivanoglou Nickoleta,Boziki Marina,Theotokis Paschalis,Kesidou Evangelia,Touloumi Olga,Dafi Nikolina,Nousiopoulou Evangelia,Lagoudaki Roza,Grigoriadis Nikolaos,Charalampopoulos Ioannis,Simeonidou ConstantinaORCID

Abstract

Abstract Background Nerve growth factor (NGF) and its receptors, tropomyosin receptor kinase A (TrkA) and pan-neurotrophin receptor p75 (p75NTR), are known to play bidirectional roles between the immune and nervous system. There are only few studies with inconclusive results concerning the expression pattern and role of NGF, TrkA, and p75NTR (NGF system) under the neuroinflammatory conditions in multiple sclerosis (MS) and its mouse model, the experimental autoimmune encephalomyelitis (EAE). The aim of this study is to investigate the temporal expression in different cell types of NGF system in the central nervous system (CNS) during the EAE course. Methods EAE was induced in C57BL/6 mice 6–8 weeks old. CNS tissue samples were collected on specific time points: day 10 (D10), days 20–22 (acute phase), and day 50 (chronic phase), compared to controls. Real-time PCR, Western Blot, histochemistry, and immunofluorescence were performed throughout the disease course for the detection of the spatio-temporal expression of the NGF system. Results Our findings suggest that both NGF and its receptors, TrkA and p75NTR, are upregulated during acute and chronic phase of the EAE model in the inflammatory lesions in the spinal cord. NGF and its receptors were co-localized with NeuN+ cells, GAP-43+ axons, GFAP+ cells, Arginase1+ cells, and Mac3+ cells. Furthermore, TrkA and p75NTR were sparsely detected on CNPase+ cells within the inflammatory lesion. Of high importance is our observation that despite EAE being a T-mediated disease, only NGF and p75NTR were shown to be expressed by B lymphocytes (B220+ cells) and no expression on T lymphocytes was noticed. Conclusion Our results indicate that the components of the NGF system are subjected to differential regulation during the EAE disease course. The expression pattern of NGF, TrkA, and p75NTR is described in detail, suggesting possible functional roles in neuroprotection, neuroregeneration, and remyelination by direct and indirect effects on the components of the immune system.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3