Author:
Iweka Chinyere Agbaegbu,Seigneur Erica,Hernandez Amira Latif,Paredes Sur Herrera,Cabrera Mica,Blacher Eran,Pasternak Connie Tsai,Longo Frank M.,de Lecea Luis,Andreasson Katrin I.
Abstract
AbstractAging is associated with loss of circadian immune responses and circadian gene transcription in peripheral macrophages. Microglia, the resident macrophages of the brain, also show diurnal rhythmicity in regulating local immune responses and synaptic remodeling. To investigate the interaction between aging and microglial circadian rhythmicity, we examined mice deficient in the core clock transcription factor, BMAL1. Aging Cd11bcre;Bmallox/lox mice demonstrated accelerated cognitive decline in association with suppressed hippocampal long-term potentiation and increases in immature dendritic spines. C1q deposition at synapses and synaptic engulfment were significantly decreased in aging Bmal1-deficient microglia, suggesting that BMAL1 plays a role in regulating synaptic pruning in aging. In addition to accelerated age-associated hippocampal deficits, Cd11bcre;Bmallox/lox mice also showed deficits in the sleep–wake cycle with increased wakefulness across light and dark phases. These results highlight an essential role of microglial BMAL1 in maintenance of synapse homeostasis in the aging brain.
Funder
Marie Skłodowska-Curie Grant
Azrieli Faculty Fellowship
Stanford School of Medicine Dean's Postdoctoral Fellowship
American Heart Foundation/Allen Frontiers Award
The Zhang-Jiang Research Fund
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献