Abstract
Abstract
Background
Cathepsin H (CatH) is a lysosomal cysteine protease with a unique aminopeptidase activity. Its expression level is increased in activated immune cells including dendritic cells, macrophages, and microglia. We have previously reported that CatH deficiency impairs toll-like receptor 3 (TLR3)-mediated activation of interferon regulatory factor 3 (IRF3), and the subsequent secretion of interferon (IFN)-β from dendritic cells. Furthermore, there is increasing evidence that IFN-β secreted from microglia/macrophages has neuroprotective effects. These observations prompted further investigation into the effects of CatH deficiency on neuropathological changes.
Methods
In this study, neuropathological changes were examined using histochemical staining (both hematoxylin-eosin (H&E) and Nissl) of the hippocampus of wild-type (WT) and CatH-deficient (CatH−/−) mice after hypoxia-ischemia (HI). The density and the localization of CatH and TLR3 were examined by immunofluorescent staining. CatH processing in microglia was assayed by pulse-chase experiments, while immunoblotting was used to examine TLR3 expression and IRF3 activation in microglia/macrophages in the presence of poly(I:C). Microglial cell death was examined by fluorescence-activated cell sorting (FACS), and primary astrocyte proliferation in the presence of IFN-β was examined using scratch wound assay.
Results
WT mice displayed severe atrophy in association with neuronal death and moderate astrogliosis in the hippocampus following neonatal HI. Somewhat surprisingly, CatH−/− mice showed marked neuronal death without severe atrophy in the hippocampus following HI. Furthermore, there was notable microglia/macrophages cell death and strong astrogliosis in the hippocampus. The TLR3 and phosphorylated IRF3 expression level in the hippocampus or splenocytes (mainly splenic macrophages); from CatH−/− mice was lower than in WT mice. In vitro experiments demonstrated that recombinant IFN-β suppressed HI-induced microglial cell death and astrocyte proliferation.
Conclusion
These observations suggest that CatH plays a critical role in the proteolytic maturation and stabilization of TLR3, which is necessary for IFN-β production. Therefore, impaired TLR3/IFN-β signaling resulting from CatH deficiency may induce microglial cell death after activation and astrogliosis/glial scar formation in the hippocampus following HI injury, leading to suppression of hippocampal atrophy.
Funder
Japan Society for the Promotion of Science
National Natural Science Foundation of China
Beijing Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献