Identification of female-enriched and disease-associated microglia (FDAMic) contributes to sexual dimorphism in late-onset Alzheimer’s disease

Author:

Wu Deng,Bi Xiaoman,Chow Kim Hei-Man

Abstract

Abstract Background Late-onset Alzheimer’s disease (LOAD) is the most common form of dementia; it disproportionally affects women in terms of both incidence rates and severity of progression. The cellular and molecular mechanisms underlying this clinical phenomenon remain elusive and ill-defined. Methods In-depth analyses were performed with multiple human LOAD single-nucleus transcriptome datasets to thoroughly characterize cell populations in the cerebral cortex. ROSMAP bulk human brain tissue transcriptome and DNA methylome datasets were also included for validation. Detailed assessments of microglial cell subpopulations and their relevance to sex-biased changes at the tissue level were performed. Clinical trait associations, cell evolutionary trajectories, and transcription regulon analyses were conducted. Results The relative numbers of functionally defective microglia were aberrantly increased uniquely among affected females. Substratification of the microglia into different subtypes according to their transcriptomic signatures identified a group of female-enriched and disease-associated microglia (FDAMic), the numbers of which were positively associated with disease severity. Phenotypically, these cells exhibit transcriptomic signatures that support active proliferation, MHC class II autoantigen presentation and amyloid-β binding, but they are also likely defective in phagocytosis. FDAMic are likely evolved from female activated response microglia (ARMic) with an APOE4 background and compromised estrogen receptor (ER) signaling that is deemed to be active among most subtypes of microglia. Conclusion This study offered important insights at both the cellular and molecular levels into how ER signaling affects microglial heterogeneity and function. FDAMic are associated with more advanced pathologies and severe trends of cognitive decline. Their emergence could, at least in part, explain the phenomenon of greater penetrance of the APOE4 genotype found in females. The biases of FDAMic emergence toward female sex and APOE4 status may also explain why hormone replacement therapy is more effective in APOE4 carriers. The pathologic nature of FDAMic suggests that selective modulations of these cells may help to regain brain neuroimmune homeostasis, serving as a new target for future drug development.

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Alzheimer's Association

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3