SARS-CoV-2 envelope protein triggers depression-like behaviors and dysosmia via TLR2-mediated neuroinflammation in mice

Author:

Su Wenliang,Ju Jiahang,Gu Minghui,Wang Xinrui,Liu Shaozhuang,Yu Jiawen,Mu Dongliang

Abstract

Abstract Background Depression and dysosmia have been regarded as primary neurological symptoms in COVID-19 patients, the mechanism of which remains unclear. Current studies have demonstrated that the SARS-CoV-2 envelope (E) protein is a pro-inflammatory factor sensed by Toll-like receptor 2 (TLR2), suggesting the pathological feature of E protein is independent of viral infection. In this study, we aim to ascertain the role of E protein in depression, dysosmia and associated neuroinflammation in the central nervous system (CNS). Methods Depression-like behaviors and olfactory function were observed in both female and male mice receiving intracisternal injection of E protein. Immunohistochemistry was applied in conjunction with RT-PCR to evaluate glial activation, blood–brain barrier status and mediators synthesis in the cortex, hippocampus and olfactory bulb. TLR2 was pharmacologically blocked to determine its role in E protein-related depression-like behaviors and dysosmia in mice. Results Intracisternal injection of E protein evoked depression-like behaviors and dysosmia in both female and male mice. Immunohistochemistry suggested that the E protein upregulated IBA1 and GFAP in the cortex, hippocampus and olfactory bulb, while ZO-1 was downregulated. Moreover, IL-1β, TNF-α, IL-6, CCL2, MMP2 and CSF1 were upregulated in both cortex and hippocampus, whereas IL-1β, IL-6 and CCL2 were upregulated in the olfactory bulb. Furtherly, inhibiting microglia, rather than astrocytes, alleviated depression-like behaviors and dysosmia induced by E protein. Finally, RT-PCR and immunohistochemistry suggested that TLR2 was upregulated in the cortex, hippocampus and olfactory bulb, the blocking of which mitigated depression-like behaviors and dysosmia induced by E protein. Conclusions Our study demonstrates that envelope protein could directly induce depression-like behaviors, dysosmia, and obvious neuroinflammation in CNS. TLR2 mediated depression-like behaviors and dysosmia induced by envelope protein, which could serve as a promising therapeutic target for neurological manifestation in COVID-19 patients.

Funder

National High Level Hospital Clinical Research Funding

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3