Nrf-2 signaling inhibits intracranial aneurysm formation and progression by modulating vascular smooth muscle cell phenotype and function

Author:

Shi Yuan,Li Sichen,Song Yaying,Liu Peixi,Yang Zixiao,Liu Yingjun,Quan Kai,Yu Guo,Fan Zhiyuan,Zhu Wei

Abstract

Abstract Background Oxidative stress and vascular smooth muscle cell (VSMC) phenotypic modulation influence intracranial aneurysm (IA) formation and progression. Oxidative stress plays an important role in phenotype switching, and nuclear factor erythroid 2-related factor 2 (Nrf-2) is one of the main antioxidant systems. Unfortunately, little is known about how Nrf-2 signaling influences VSMC phenotype switches during IA pathogenesis. Methods We examined the effect of Nrf-2 activation IA on formation and progression in an elastase-induced rat IA model. We also developed a hydrogen peroxide (H2O2)-induced VSMC oxidative damage model. Then, we analyzed VSMC phenotype changes in the setting of Nrf-2 activation or inhibition in vitro. The proliferation, migration ability, and apoptosis rate of VSMCs were tested. Lastly, we measured the expression levels of antioxidant enzymes and inflammatory cytokines downstream of Nrf-2. Results Nrf-2 activation suppressed IA formation and progression in vivo. We confirmed Nrf-2 nuclear translocation and a VSMC switch from the contractile to synthetic phenotype. Nrf-2 activation inhibited the proliferation, migratory ability, and apoptosis rate enhanced by H2O2. Quantitative real-time polymerase chain reaction (PCR) and western blot analysis revealed that Nrf-2 activation promoted antioxidant enzymes and VSMC-specific marker gene expressions but decreased pro-inflammatory cytokine levels. Conclusion These results suggest that Nrf-2 exerts protective effects against IA development by preventing VSMCs from changing to a synthetic phenotype.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3