Pharmacologic inhibition of NLRP3 reduces the levels of α-synuclein and protects dopaminergic neurons in a model of Parkinson’s disease

Author:

Amo-Aparicio Jesus,Daly Jonathan,Højen Jesper Falkesgaard,Dinarello Charles A.

Abstract

Abstract Background Parkinson’s disease (PD) is characterized by a progressive degeneration of dopaminergic neurons, which leads to irreversible loss of peripheral motor functions. Death of dopaminergic neurons induces an inflammatory response in microglial cells, which further exacerbates neuronal loss. Reducing inflammation is expected to ameliorate neuronal loss and arrest motor dysfunctions. Because of the contribution of the NLRP3 inflammasome to the inflammatory response in PD, we targeted NLRP3 using the specific inhibitor OLT1177®. Methods We evaluated the effectiveness of OLT1177® in reducing the inflammatory response in an MPTP neurotoxic model of PD. Using a combination of in vitro and in vivo studies, we analyzed the effects of NLRP3 inhibition on pro-inflammatory markers in the brain, α-synuclein aggregation, and dopaminergic neuron survival. We also determined the effects of OLT1177® on locomotor deficits associated with MPTP and brain penetrance. Results Treatment with OLT1177® prevented the loss of motor function, reduced the levels of α-synuclein, modulated pro-inflammatory markers in the nigrostriatal areas of the brain, and protected dopaminergic neurons from degeneration in the MPTP model of PD. We also demonstrated that OLT1177® crosses the blood–brain barrier and reaches therapeutic concentrations in the brain. Conclusions These data suggest that targeting the NLRP3 inflammasome by OLT1177® may be a safe and novel therapeutic approach to arrest neuroinflammation and protect against neurological deficits of Parkinson’s disease in humans.

Funder

National Health Research Institutes

Lundbeck Foundation

OLATEC Therapeutics LLC

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autophagy in Parkinson’s Disease;Biomolecules;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3