PLPP/CIN-mediated NF2 S10 dephosphorylation distinctly regulates kainate-induced seizure susceptibility and neuronal death through PAK1-NF-κB-COX-2-PTGES2 signaling pathway

Author:

Kim Ji-Eun,Lee Duk-Shin,Kim Tae-Hyun,Park Hana,Kim Min-Ju,Kang Tae-Cheon

Abstract

Abstract Background Pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates serine (S) 10 site on neurofibromin 2 (NF2, also known as merlin (moesin-ezrin-radixin-like protein) or schwannomin). p21-activated kinase 1 (PAK1) is a serine/threonine protein kinase, which is involved in synaptic activity and plasticity in neurons. NF2 and PAK1 reciprocally regulate each other in a positive feedback manner. Thus, the aim of the present study is to investigate the effects of PLPP/CIN-mediated NF2 S10 dephosphorylation on PAK1-related signaling pathways under physiological and neuroinflammatory conditions, which are largely unknown. Methods After kainate (KA) injection in wild-type, PLPP/CIN−/− and PLPP/CINTg mice, seizure susceptibility, PAK1 S204 autophosphorylation, nuclear factor-κB (NF-κB) p65 S276 phosphorylation, cyclooxygenase-2 (COX-2) upregulation, prostaglandin E synthase 2 (PTGES2) induction and neuronal damage were measured. The effects of 1,1'-dithiodi-2-naphthtol (IPA-3, a selective inhibitor of PAK1) pretreatment on these responses to KA were also validated. Results PLPP/CIN overexpression increased PAK1 S204 autophosphorylation concomitant with the enhanced NF2 S10 dephosphorylation in hippocampal neurons under physiological condition. Following KA treatment, PLPP/CIN overexpression delayed the seizure on-set and accelerated PAK1 S204 phosphorylation, NF-κB p65 S276 phosphorylation, COX-2 upregulation and PTGES2 induction, which were ameliorated by PLPP/CIN deletion or IPA-3. Furthermore, IPA-3 pretreatment shortened the latency of seizure on-set without affecting seizure severity (intensity) and ameliorated CA3 neuronal death induced by KA. Conclusions These findings indicate that PLPP/CIN may regulate seizure susceptibility (the latency of seizure on-set) and CA3 neuronal death in response to KA through NF2-PAK1-NF-κB-COX-2-PTGES2 signaling pathway.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3