Consecutive intra-gingival injections of lipopolysaccharide and butyric acid to mice induce abnormal behavior and changes in cytokine concentrations

Author:

Tsukahara TakamitsuORCID,Toyoda Atsushi,Kawase Takahiro,Nakamura Shin-ichi,Ochiai Kuniyasu

Abstract

Abstract Background Periodontopathic bacteria such as Porphyromonas gingivalis produce several metabolites, including lipopolysaccharide (LPS) and n-butyric acid (BA). Past work suggested that periodontal infection may cause cognitive impairment in mice. Aims To elucidate the mechanisms by which metabolites such as LPS and BA, resulting from Porphyromonas gingivalis activity, induce immunological and physiological abnormalities in mice. Methods In the present work, 28 male ICR mice were placed in an open-field arena and the total distance (cm/600 s) they covered was recorded. Based on their moving distances, mice were divided into 4 groups (n = 7) and injected the following substances into their gingival tissues for 32 consecutive days: saline (C), 5 mmol/L of BA (B), 1 μg/mouse of LPS (L), and BA-LPS (BL) solutions. Distances covered by mice were also measured on days 14 and 21, with their habituation scores considered as “(moving distance on day 14 or 21)/(moving distance on day 0)”. Afterwards, mice were dissected, and hippocampal gene expression and the concentrations of short-chain fatty acids, neurotransmitters and cytokines in their blood plasma and brains were analyzed. In addition, mouse brain and liver tissues were fixed and visually assessed for histopathological abnormalities. Results Group BL had significantly higher habituation scores than C and B on day 14. LPS induced higher habituation scores on day 21. LPS induced significant decreases in the mRNA levels of interleukin (IL)-6 and brain-derived neurotrophic factors, and an increase in neurotrophic tyrosine kinase receptor type 2. In both plasma and brain, LPS induced a significant acetate increase. Moreover, LPS significantly increased acetylcholine in brain. In plasma alone, LPS and BA significantly decreased monocyte chemoattractant protein 1 (MCP-1). However, while LPS significantly decreased tyrosine, BA significantly increased it. Lastly, LPS significantly decreased IL-6 and tumor necrosis factor in plasma. No histopathological abnormalities were detected in liver or brain tissues of mice. Conclusion We showed that injections of LPS and/or BA induced mice to move seemingly tireless and that both LPS and BA injections strongly induced a reduction of MCP-1 in blood plasma. We concluded that LPS and BA may have been crucial to induce and/or aggravate abnormal behavior in mice.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3