Deterioration of cognitive function after transient cerebral ischemia with amyloid-β infusion—possible amelioration of cognitive function by AT2 receptor activation

Author:

Min Li-Juan,Iwanami Jun,Shudou Masachika,Bai Hui-Yu,Shan Bao-Shuai,Higaki Akinori,Mogi Masaki,Horiuchi Masatsugu

Abstract

Abstract Background To promote understanding of the pathogenesis of cognitive impairment or dementia, we explored the potential interaction between transient cerebral ischemia and amyloid-β (Aβ) infusion in mediating cognitive decline and examined the possible ameliorative effect of angiotensin II type 2 (AT2) receptor activation in vascular smooth muscle cells (VSMC) on this cognitive deficit. Methods Adult male wild-type mice (WT) and mice with VSMC-specific AT2 receptor overexpression (smAT2) were subjected to intracerebroventricular (ICV) injection of Aβ1-40. Transient cerebral ischemia was induced by 15 min of bilateral common carotid artery occlusion (BCCAO) 24 h after Aβ injection. Results Aβ injection in WT induced a cognitive decline, whereas BCCAO did not cause a significant cognitive deficit. In contrast, WT with BCCAO following Aβ injection exhibited more marked cognitive decline compared to Aβ injection alone, in concert with increases in superoxide anion production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and expression of p22phox, p40phox, monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-1β in the hippocampus, and upregulation of RAGE (receptor for advanced glycation end product), an Aβ transporter. BCCAO following Aβ injection further enhanced neuronal pyknosis in the hippocampus, compared with BCCAO or Aβ injection alone. In contrast, smAT2 did not show a cognitive decline, increase in oxidative stress, inflammation, and RAGE level or neuronal pyknosis, which were induced by BCCAO with/without Aβ injection in WT. Conclusions Transient cerebral ischemia might worsen Aβ infusion-mediated cognitive decline and vice versa, with possible involvement of amplified oxidative stress and inflammation and impairment of the RAGE-mediated Aβ clearance system, contributing to exaggerated neuronal degeneration. AT2 receptor activation in VSMC could play an inhibitory role in this cognitive deficit.

Funder

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3