Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury

Author:

Li Yangyang,Wen Yuwen,Liu Xiuxing,Li Zhuang,Lin Bingying,Deng Caibin,Yu Ziyu,Zhu Yingting,Zhao Ling,Su Wenru,Zhuo Yehong

Abstract

Abstract Background The aim of this study was to establish a complete retinal cell atlas of ischemia–reperfusion injury by single-cell RNA sequencing, and to explore the underlying mechanism of retinal ischemia–reperfusion injury in mice. Methods Single-cell RNA sequencing was used to evaluate changes in the mouse retinal ischemia reperfusion model. In vivo and in vitro experiments were performed to verify the protective effect of inhibiting ferroptosis in retinal ischemia–reperfusion injury. Results After ischemia–reperfusion injury, retinal cells were significantly reduced, accompanied by the activation of myeloid and a large amount of blood-derived immune cell infiltration. The IFNG, MAPK and NFKB signaling pathways in retinal neuronal cells, together with the TNF signaling pathway in myeloid give rise to a strong inflammatory response in the I/R state. Besides, the expression of genes implicating iron metabolism, oxidative stress and multiple programed cell death pathways have changed in cell subtypes described above. Especially the ferroptosis-related genes and blocking this process could apparently alleviate the inflammatory immune responses and enhance retinal ganglion cells survival. Conclusions We established a comprehensive landscape of mouse retinal ischemia–reperfusion injury at the single-cell level, revealing the important role of ferroptosis during this injury, and targeted inhibition of ferroptosis can effectively protect retinal structure and function.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3