Abstract
Abstract
Background
Anti-inflammatory approaches are emerging as a new strategy for the treatment of depressive disorders. Ginsenoside Rb1 (GRb1), a major component of Panax ginseng, can inhibit inflammatory cascade and alleviate depressive-like behaviors. Microglia can promote or inhibit adult hippocampal neurogenesis according to their functional phenotypes. Here, we examine whether GRb1 may exert antidepressant effects by promoting a pro-neurogenic phenotype of microglia and thereby increasing neurogenesis.
Methods
The antidepressant effects of GRb1 or the licensed antidepressant imipramine (IMI) were assessed in chronic mild stress (CMS)-exposed male mice. The depressive-like behaviors of mice were evaluated by sucrose preference test, forced swimming test (FST), and tail suspension test (TST). The microglial phenotypes were identified by pro- and anti-inflammatory cytokine expression and morphological properties, analyzed by RT-qPCR, western blotting, and immunofluorescence staining. The effect of GRb1-treated microglia on adult hippocampal neurogenesis in vivo and in vitro was detected using immunofluorescence staining.
Results
Behavioral assessment indicated that GRb1 or IMI treatment alleviated depressive-like behaviors in CMS-exposed mice. Immunofluorescence examination demonstrated that GRb1 induced a pro-neurogenic phenotype of microglia via activating PPARγ in vivo and in vitro, which were effectively reversed by the PPARγ inhibitor GW9662. In addition, GRb1-treated microglia increased the proliferation and differentiation of neural precursor cells.
Conclusions
These findings demonstrated that GRb1 alleviated depressive-like behaviors of CMS-exposed male mice mainly through PPARγ-mediated microglial activation and improvement of adult hippocampus neurogenesis.
Funder
Innovative Research Group Project of the National Natural Science Foundation of China
Department of Science and Technology of Sichuan Province
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献