Decrease in naturally occurring antibodies against epitopes of Alzheimer’s disease (AD) risk gene products is associated with cognitive decline in AD

Author:

Gu Dongmei,Wang Luchun,Zhang Nan,Wang Huali,Yu Xin

Abstract

Abstract Background Naturally occurring antibodies (NAbs) are germline-encoded immunoglobulins that can bind to and clear out self-neo-epitopes as well as apoptotic and necrotic cells. However, NAbs pathological relevance in Alzheimer’s disease (AD) is not well-understood. Methods Twenty-eight candidate proteins encoded by AD-associated genes were selected for this study based on a number of selection criteria, including preferential expression in the brain and B-lymphocyte cells. The levels of NAbs in plasma were analyzed according to their epitopes in age- and gender-matched cognitively normal subjects (CN, n = 56), subjects with mild cognitive impairment (MCI, n = 16) and subjects with AD (n = 56). We aimed to study the levels of their NAbs in plasma and their associations with cognitive decline in individuals with AD. Results Of the 28 antigens tested, 17 showed decreased NAbs in individuals with AD; in particular, NAb-TREM2 had an area under the ROC curve of 0.806, with the highest sensitivity (0.370) at 95% specificity among all 28 tests. Further protein–protein interaction networks and functional enrichment analysis suggested that target genes were enriched in AD-related pathological processes classified under “Alzheimer’s disease”, “neurodegenerative disease” and “amyloidosis”. The “Alzheimer’s disease” and “neurodegenerative disease” clusters, which converged on the initial “recognition” step of microglial phagocytosis, showed the best diagnostic performance for AD. Conclusions This study suggests a decline in the function of the adaptive immune system in AD, and the levels of circulating NAbs are likely to serve as biomarkers for surveilling the progression of AD.

Funder

National Nature Science Foundation of China

Science and Technology Innovation 2030-Major Project

National Key Research & Development Project, Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3