Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglial cells

Author:

Johnson M. Brittany,Halman Justin R.,Burmeister Amanda R.,Currin Saralynn,Khisamutdinov Emil F.,Afonin Kirill A.,Marriott Ian

Abstract

Abstract Background Bacterial meningitis and meningoencephalitis are associated with devastating neuroinflammation. We and others have demonstrated the importance of glial cells in the initiation of immune responses to pathogens invading the central nervous system (CNS). These cells use a variety of pattern recognition receptors (PRRs) to identify common pathogen motifs and the cytosolic sensor retinoic acid inducible gene-1 (RIG-I) is known to serve as a viral PRR and initiator of interferon (IFN) responses. Intriguingly, recent evidence indicates that RIG-I also has an important role in the detection of bacterial nucleic acids, but such a role has not been investigated in glia. Methods In this study, we have assessed whether primary or immortalized human and murine glia express RIG-I either constitutively or following stimulation with bacteria or their products by immunoblot analysis. We have used capture ELISAs and immunoblot analysis to assess human microglial interferon regulatory factor 3 (IRF3) activation and IFN production elicited by bacterial nucleic acids and novel engineered nucleic acid nanoparticles. Furthermore, we have utilized a pharmacological inhibitor of RIG-I signaling and siRNA-mediated knockdown approaches to assess the relative importance of RIG-I in such responses. Results We demonstrate that RIG-I is constitutively expressed by human and murine microglia and astrocytes, and is elevated following bacterial infection in a pathogen and cell type-specific manner. Additionally, surface and cytosolic PRR ligands are also sufficient to enhance RIG-I expression. Importantly, our data demonstrate that bacterial RNA and DNA both trigger RIG-I-dependent IRF3 phosphorylation and subsequent type I IFN production in human microglia. This ability has been confirmed using our nucleic acid nanoparticles where we demonstrate that both RNA- and DNA-based nanoparticles can stimulate RIG-I-dependent IFN responses in these cells. Conclusions The constitutive and bacteria-induced expression of RIG-I by human glia and its ability to mediate IFN responses to bacterial RNA and DNA and nucleic acid nanoparticles raises the intriguing possibility that RIG-I may be a potential target for therapeutic intervention during bacterial infections of the CNS, and that the use of engineered nucleic acid nanoparticles that engage this sensor might be a method to achieve this goal.

Funder

National Institute of Neurological Disorders and Stroke

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Reference54 articles.

1. Chauhan VS, Sterka DG, Gray DL, Bost KL, Marriott I. Neurogenic exacerbation of microglial and astrocyte responses to Neisseria meningitidis and Borrelia burgdorferi. J Immunol [Internet]. 2008 Jun 15 [cited 2017 Sep 25];180(12):8241–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18523290.

2. Chauhan VS, Kluttz JM, Bost KL, Marriott I. Prophylactic and therapeutic targeting of the neurokinin-1 receptor limits neuroinflammation in a murine model of pneumococcal meningitis. J Immunol [Internet]. 2011 Jun 15 [cited 2017 Sep 25];186(12):7255–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21562162.

3. Furr SR, Moerdyk-Schauwecker M, Grdzelishvili VZ, Marriott I. RIG-I mediates nonsegmented negative-sense RNA virus-induced inflammatory immune responses of primary human astrocytes. Glia [Internet]. 2010 Jun 23 [cited 2017 Sep 25];58(13):n/a-n/a. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20578054.

4. Cooley ID, Chauhan VS, Donneyz MA, Marriott I. Astrocytes produce IL-19 in response to bacterial challenge and are sensitive to the immunosuppressive effects of this IL-10 family member. Glia [Internet]. 2014 May [cited 2017 Sep 25];62(5):818–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24677051.

5. Rasley A, Tranguch SL, Rati DM, Marriott I. Murine glia express the immunosuppressive cytokine, interleukin-10, following exposure toBorrelia burgdorferi orNeisseria meningitidis. Glia [Internet]. 2006 Apr 15 [cited 2017 Sep 25];53(6):583–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16419089.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3