Abstract
Abstract
Background
Hypoxic–ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post-HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein-coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post-hypoxic–ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/nuclear factor, erythroid 2 like 2(Nrf2) in G-protein-coupled receptor 39 (GPR39)-mediated protection.
Methods
A total of 206 10-day-old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1 h, 25 h, 49 h, and 73 h post-HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post-HIE.
Results
The expression of GPR39 and pathway-related proteins, SIRT1, PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48-h post-HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α and Nrf2, but downregulated the expressions of IL-6, IL-1β, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39’s neuroprotective effects post-HIE.
Conclusions
TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post-neonatal HIE injury.
Funder
foundation for the national institutes of health
key research and development project of hainan province
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献