STING inhibition suppresses microglia-mediated synapses engulfment and alleviates motor functional deficits after stroke

Author:

Wu Chaoran,Zhang Shiwen,Sun Hao,Li Ao,Hou Fengsheng,Qi Long,Liao Hong

Abstract

AbstractIschemic stroke is the leading cause of adult disability. Ischemia leads to progressive neuronal death and synapse loss. The engulfment of stressed synapses by microglia further contributes to the disruption of the surviving neuronal network and related brain function. Unfortunately, there is currently no effective target for suppressing the microglia-mediated synapse engulfment. Stimulator of interferon genes (STING) is an important participant in innate immune response. In the brain, microglia are the primary cell type that mediate immune response after brain insult. The intimate relationship between STING and microglia-mediated neuroinflammation has been gradually established. However, whether STING affects other functions of microglia remains elusive. In this study, we found that STING regulated microglial phagocytosis of synapses after photothrombotic stroke. The treatment of STING inhibitor H151 significantly improved the behavioral performance of injured mice in grid-walking test, cylinder test, and adhesive removal test after stroke. Moreover, the puncta number of engulfed SYP or PSD95 in microglia was reduced after consecutive H151 administration. Further analysis showed that the mRNA levels of several complement components and phagocytotic receptors were decreased after STING inhibition. Transcriptional factor STAT1 is known for regulating most of the decreased molecules. After STING inhibition, the nucleus translocation of phosphorylated STAT1 was also suppressed in microglia. Our data uncovered the novel regulatory effects of STING in microglial phagocytosis after stroke, and further emphasized STING as a potential drug-able target for post-stroke functional recovery.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3