Abstract
AbstractBackgroundTissue plasminogen activator (tPA) is a serine protease involved in fibrinolysis. It is released by endothelial cells, but also expressed by neurons and glial cells in the central nervous system (CNS). Interestingly, this enzyme also contributes to pathological processes in the CNS such as neuroinflammation by activating microglia and increasing blood–brain barrier permeability. Nevertheless, its role in the control of adaptive and innate immune response remains poorly understood.MethodstPA effects on myeloid and lymphoid cell response were studiedin vivoin the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis andin vitroin splenocytes.ResultstPA-/-animals exhibited less severe experimental autoimmune encephalomyelitis than their wild-type counterparts. This was accompanied by a reduction in both lymphoid and myeloid cell populations in the spinal cord parenchyma. In parallel, tPA increased T cell activation and proliferation, as well as cytokine production by a protease-dependent mechanism andviaplasmin generation. In addition, tPA directly raised the expression of MHC-II and the co-stimulatory molecules CD80 and CD86 at the surface of dendritic cells and macrophages by a direct action dependent of the activation of epidermal growth factor receptor.ConclusionsOur study provides new insights into the mechanisms responsible for the harmful functions of tPA in multiple sclerosis and its animal models: tPA promotes the proliferation and activation of both lymphoid and myeloid populations by distinct, though complementary, mechanisms.
Funder
Conseil Régional Normandie
Etablissement Français du Sang
Fondation pour l'Aide à la Recherche sur la Sclérose en Plaques
Instituto de Salud Carlos III
Consejería de Sanidad de Castilla-La Mancha
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献