NT-4 attenuates neuroinflammation via TrkB/PI3K/FoxO1 pathway after germinal matrix hemorrhage in neonatal rats

Author:

Wang Tianyi,Zhang JunyiORCID,Li Peng,Ding Yan,Tang Jiping,Chen Gang,Zhang John H.

Abstract

Abstract Background Neuroinflammation plays an important role in pathogenesis of germinal matrix hemorrhage (GMH). Neurotrophin-4 (NT-4) is a member of the neurotrophin family and interacts with the tropomyosin receptor kinase B (TrkB). NT-4 has been shown to confer neuroprotective effects following cerebral ischemia. We aimed to investigate the neuroprotective function of NT-4-TrkB signaling, as well as its downstream signaling cascade phosphatidylinositol-3-kinases (PI3K)/protein kinase B (Akt)/forkhead box protein O1 (FoxO1), following GMH in neonatal rats. Methods GMH was induced by intraparenchymal injection of bacterial collagenase (0.3 U) in P7 rat pups. A total of 163 pups were used in this study. Recombinant human NT-4 was administered intranasally at 1 h after the collagenase injection. The selective TrkB antagonist ANA-12, selective PI3K inhibitor LY294002, and FoxO1 activating CRISPR were administered intracerebroventricularly at 24 h prior to NT-4 treatment to investigate the underlying mechanism. Short-term and long-term neurobehavioral assessments, immunofluorescence staining, Nissl’s staining, and Western blot were performed. Results Expression of phosphorylated TrkB increased after GMH, reaching the peak level at day 3 after hemorrhage. TrkB receptors were observed on neurons, microglia, and astrocytes. The administration of rh-NT-4 induced phosphorylation of TrkB, expression of PI3K, and phosphorylation of Akt. Meanwhile, it decreased FoxO1 and IL-6 levels. Selective inhibition of TrkB/PI3K/Akt signaling in microglia increased the expression levels of FoxO1 and pro-inflammatory cytokines. FoxO1 activating CRISPR increased the expression of IL-6, suggesting that FoxO1 might be a potential inducer of pro-inflammatory factors. These results suggested that PI3K/Akt/FoxO1 signaling may be the downstream pathway of activation of TrkB. The rat pups treated with rh-NT-4 performed better than vehicle-treated animals in both short-term and long-term behavioral tests. Conclusion These data showed that rh-NT-4 reduced the expression levels of pro-inflammatory cytokines, improved neurological function, attenuated neuroinflammation, and thereby mitigated post-hemorrhagic hydrocephalus after GMH by TrkB/PI3K/Akt/FoxO1 pathway. These results indicated that rh-NT-4 could be a promising therapeutic strategy to ameliorate neuroinflammation and hydrocephalus after GMH or other similar brain injuries.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3