Semaphorin 4D is upregulated in neurons of diseased brains and triggers astrocyte reactivity

Author:

Evans Elizabeth E.ORCID,Mishra VikasORCID,Mallow Crystal,Gersz Elaine M.,Balch Leslie,Howell Alan,Reilly Christine,Smith Ernest S.,Fisher Terrence L.ORCID,Zauderer MauriceORCID

Abstract

Abstract Background The close interaction and interdependence of astrocytes and neurons allows for the possibility that astrocyte dysfunction contributes to and amplifies neurodegenerative pathology. Molecular pathways that trigger reactive astrocytes may represent important targets to preserve normal homeostatic maintenance and modify disease progression. Methods Semaphorin 4D (SEMA4D) expression in the context of disease-associated neuropathology was assessed in postmortem brain sections of patients with Huntington’s (HD) and Alzheimer’s disease (AD), as well as in mouse models of HD (zQ175) and AD (CVN; APPSwDI/NOS2−/−) by immunohistochemistry. Effects of SEMA4D antibody blockade were assessed in purified astrocyte cultures and in the CVN mouse AD model. CVN mice were treated weekly from 26 to 38 weeks of age; thereafter mice underwent cognitive assessment and brains were collected for histopathology. Results We report here that SEMA4D is upregulated in neurons during progression of neurodegenerative diseases and is a trigger of reactive astrocytes. Evidence of reactive astrocytes in close proximity to neurons expressing SEMA4D is detected in brain sections of patients and mouse models of HD and AD. We further report that SEMA4D-blockade prevents characteristic loss of GABAergic synapses and restores spatial memory and learning in CVN mice, a disease model that appears to reproduce many features of AD-like pathology including neuroinflammation. In vitro mechanistic studies demonstrate that astrocytes express cognate receptors for SEMA4D and that ligand binding triggers morphological variations, and changes in expression of key membrane receptors and enzymes characteristic of reactive astrocytes. These changes include reductions in EAAT-2 glutamate transporter and glutamine synthetase, key enzymes in neurotransmitter recycling, as well as reduced GLUT-1 glucose and MCT-4 lactate transporters, that allow astrocytes to couple energy metabolism with synaptic activity. Antibody blockade of SEMA4D prevented these changes and reversed functional deficits in glucose uptake. Conclusions Collectively, these results suggest that SEMA4D blockade may ameliorate disease pathology by preserving normal astrocyte function and reducing the negative consequences of reactive astrogliosis.

Funder

Vaccinex

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3