Abstract
Abstract
Background and purpose
Stroke is associated with high disability and mortality rates and increases the incidence of organ-related complications. Research has revealed that the outcomes and prognosis of stroke are regulated by the state of the intestinal microbiota. However, the possibility that the manipulation of the intestinal microbiota can alter sex-related stroke outcomes remain unknown.
Methods
To verify the different effects of microbiota from different sexes on stroke outcomes, we performed mouse fecal microbiota transplantation (FMT) and established a model of ischemic stroke. Male and female mice received either male or female microbiota through FMT. Ischemic stroke was triggered by MCAO (middle cerebral artery occlusion), and sham surgery served as a control. Over the next few weeks, the mice underwent neurological evaluation and metabolite and inflammatory level detection, and we collected fecal samples for 16S ribosomal RNA analysis.
Results
We found that when the female mice were not treated with FMT, the microbiota (especially the Firmicutes-to-Bacteroidetes ratio) and the levels of three main metabolites tended to resemble those of male mice after experimental stroke, indicating that stroke can induce an ecological imbalance in the biological community. Through intragastric administration, the gut microbiota of male and female mice was altered to resemble that of the other sex. In general, in female mice after MCAO, the survival rate was increased, the infarct area was reduced, behavioral test performance was improved, the release of beneficial metabolites was promoted and the level of inflammation was mitigated. In contrast, mice that received male microbiota were much more hampered in terms of protection against brain damage and the recovery of neurological function.
Conclusion
A female-like biological community reduces the level of systemic proinflammatory cytokines after ischemic stroke. Poor stroke outcomes can be positively modulated following supplementation with female gut microbiota.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference66 articles.
1. Lee J, D’Aigle J, Atadja L, et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circ Res. 2020;127(4):453–65.
2. Sinagra E, Pellegatta G, Guarnotta V, et al. Microbiota gut-brain axis in ischemic stroke: a narrative review with a focus about the relationship with inflammatory bowel disease. Life (Basel). 2021; 11(7).
3. Gwak MG, Chang SY. Gut-brain connection: microbiome, gut barrier, and environmental sensors. Immune Netw. 2021;21(3): e20.
4. Battaglini D, Pimentel-Coelho PM, Robba C, et al. Gut microbiota in acute ischemic stroke: from pathophysiology to therapeutic implications. Front Neurol. 2020;11:598.
5. Phan HT, Blizzard CL, Reeves MJ, et al. Sex differences in long-term mortality after stroke in the INSTRUCT (INternational STRoke oUtComes sTudy): a meta-analysis of individual participant data. Circ Cardiovasc Qual Outcomes. 2017; 10(2).
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献