HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction

Author:

Sun Xiao-Yu,Zheng Teng,Yang Xiu,Liu Le,Gao Shen-Shen,Xu Han-Bing,Song Yu-Tong,Tong Kun,Yang Li,Gao Ya,Wu Tong,Hao Jing-Ru,Lu Chen,Ma Tao,Gao CanORCID

Abstract

Abstract Background Inflammation can induce cognitive dysfunction in patients who undergo surgery. Previous studies have demonstrated that both acute peripheral inflammation and anaesthetic insults, especially isoflurane (ISO), are risk factors for memory impairment. Few studies are currently investigating the role of ISO under acute peri-inflammatory conditions, and it is difficult to predict whether ISO can aggravate inflammation-induced cognitive deficits. HDACs, which are essential for learning, participate in the deacetylation of lysine residues and the regulation of gene transcription. However, the cell-specific mechanism of HDACs in inflammation-induced cognitive impairment remains unknown. Methods Three-month-old C57BL/6 mice were treated with single versus combined exposure to LPS injected intraperitoneally (i.p.) to simulate acute abdominal inflammation and isoflurane to investigate the role of anaesthesia and acute peripheral inflammation in cognitive impairment. Behavioural tests, Western blotting, ELISA, immunofluorescence, qRT-PCR, and ChIP assays were performed to detect memory, the expressions of inflammatory cytokines, HDAC2, BDNF, c-Fos, acetyl-H3, microglial activity, Bdnf mRNA, c-fos mRNA, and Bdnf and c-fos transcription in the hippocampus. Results LPS, but not isoflurane, induced neuroinflammation-induced memory impairment and reduced histone acetylation by upregulating histone deacetylase 2 (HDAC2) in dorsal hippocampal CaMKII+ neurons. The hyperexpression of HDAC2 in neurons was mediated by the activation of microglia. The decreased level of histone acetylation suppressed the transcription of Bdnf and c-fos and the expressions of BDNF and c-Fos, which subsequently impaired memory. The adeno-associated virus ShHdac2, which suppresses Hdac2 after injection into the dorsal hippocampus, reversed microglial activation, hippocampal glutamatergic BDNF and c-Fos expressions, and memory deficits. Conclusions Reversing HDAC2 in hippocampal CaMKII+ neurons exert a neuroprotective effect against neuroinflammation-induced memory deficits.

Funder

National Natural Science Foundation of China

Qinglan Project of Jiangsu Province of China

Jiangsu Provincial Department of Education

Graduate Research and Innovation Projects of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3