Abstract
Abstract
Background
The adaption of brain region is fundamental to the development and maintenance of nervous system disorders. The prelimbic cortex (PrL) participates in the affective components of the pain sensation. However, whether and how the adaptation of PrL contributes to the comorbidity of neuropathic pain and depression are unknown.
Methods
Using resting-state functional magnetic resonance imaging (rs-fMRI), genetic knockdown or overexpression, we systematically investigated the activity of PrL region in the pathogenesis of neuropathic pain/depression comorbid using the combined approaches of immunohistochemistry, electrophysiology, and behavior.
Results
The activity of PrL and the excitability of pyramidal neurons were decreased, and the osteoclastic tartrate-resistant acid phosphatase 5 (Acp5) expression in PrL neurons was upregulated following the acquisition of spared nerve injury (SNI)-induced comorbidity. Genetic knockdown of Acp5 in pyramidal neurons, but not parvalbumin (PV) neurons or somatostatin (SST) neurons, attenuated the decrease of spike number, depression-like behavior and mechanical allodynia in comorbidity rats. Overexpression of Acp5 in PrL pyramidal neurons decreased the spike number and induced the comorbid-like behavior in naïve rats. Moreover, the expression of interleukin-6 (IL-6), phosphorylated STAT3 (p-STAT3) and acetylated histone H3 (Ac-H3) were significantly increased following the acquisition of comorbidity in rats. Increased binding of STAT3 to the Acp5 gene promoter and the interaction between STAT3 and p300 enhanced acetylation of histone H3 and facilitated the transcription of Acp5 in PrL in the modeled rodents. Inhibition of IL-6/STAT3 pathway prevented the Acp5 upregulation and attenuated the comorbid-like behaviors in rats.
Conclusions
These data suggest that the adaptation of PrL mediated by IL-6/STAT3/Acp5 pathway contributed to the comorbidity of neuropathic pain/depression induced by SNI.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference56 articles.
1. Radat F, Margot-Duclot A, Attal N. Psychiatric co-morbidities in patients with chronic peripheral neuropathic pain: a multicentre cohort study. Eur J Pain. 2013;17:1547–57.
2. Maletic V, Raison CL. Neurobiology of depression, fibromyalgia and neuropathic pain. Front Biosci (Landmark Ed). 2009;14:5291–338.
3. Aguera-Ortiz L, Failde I, Mico JA, Cervilla J, Lopez-Ibor JJ. Pain as a symptom of depression: prevalence and clinical correlates in patients attending psychiatric clinics. J Affect Disord. 2011;130:106–12.
4. Lee P, Zhang M, Hong JP, Chua HC, Chen KP, Tang SW, Chan BT, Lee MS, Lee B, Gallagher GL, Dossenbach M. Frequency of painful physical symptoms with major depressive disorder in Asia: relationship with disease severity and quality of life. J Clin Psychiatry. 2009;70:83–91.
5. Li J, Li Y, Zhang B, Shen X, Zhao H. Why depression and pain often coexist and mutually reinforce: role of the lateral habenula. Exp Neurol. 2016;284:106–13.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献