Abstract
Abstract
Background
Bacterial infection is a potential risk factor for depression. However, little is known about the mechanistic link between bacterial endotoxin and depressive-like behaviors. The aim of the present study was to clarify whether liposaccharide (LPS) could induce depressive-like behaviors in mice via sequentially activating small GTPase RagA, mammalian target of rapamycin (mTOR), and p70S6K.
Methods
C57BL/6 N mice were treated with 0.83 mg/kg LPS by intraperitoneal injection for 24 h. The animals were assessed for depressive-like behaviors by forced swim test and tail suspension test. The expression levels of RagA, mTOR, and p70S6K were determined in mice, primary cortical neurons, neural stem cells, and PC12 cells.
Results
LPS effectively induced depressive-like behaviors in mice. Biochemical examination revealed that LPS not only upregulated RagA expression but also activated mTOR/p70S6K pathway in mouse brains. LPS challenge also achieved a similar effect in primary cortical neurons, neural stem cells, and PC12 cells. Following the silencing of RagA expression with specific siRNA, LPS failed to induce mTORC1 translocation to the lysosomal membranes in PC12 cells. These results suggested that LPS might sequentially upregulate RagA and activate mTOR and p70S6K pathways in mice and neural stem cells.
Conclusions
This study for the first time demonstrated that LPS might induce depressive-like behaviors in mice via the upregulation of RagA and subsequent activation of mTOR/p70S6K pathway. Such information may highlight the RagA-mTOR-p70S6K signaling cascade as a novel therapeutic target for the development of new anti-depressant therapeutics.
Funder
General Research Fund
National Natural Science Foundation of China
Health and Medical Research Fund
Science, Technology and Innovation Commission of Shenzhen Municipality
the Seed Funding for Basic Research Programme
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献