Author:
Paladino Jonathan D,Crooke Philip S,Brackney Christopher R,Kaynar A Murat,Hotchkiss John R
Abstract
Abstract
Background
Medical care commonly involves the apprehension of complex patterns of patient derangements to which the practitioner responds with patterns of interventions, as opposed to single therapeutic maneuvers. This complexity renders the objective assessment of practice patterns using conventional statistical approaches difficult.
Methods
Combinatorial approaches drawn from symbolic dynamics are used to encode the observed patterns of patient derangement and associated practitioner response patterns as sequences of symbols. Concatenating each patient derangement symbol with the contemporaneous practitioner response symbol creates “words” encoding the simultaneous patient derangement and provider response patterns and yields an observed vocabulary with quantifiable statistical characteristics.
Results
A fundamental observation in many natural languages is the existence of a power law relationship between the rank order of word usage and the absolute frequency with which particular words are uttered. We show that population level patterns of patient derangement: practitioner intervention word usage in two entirely unrelated domains of medical care display power law relationships similar to those of natural languages, and that–in one of these domains–power law behavior at the population level reflects power law behavior at the level of individual practitioners.
Conclusions
Our results suggest that patterns of medical care can be approached using quantitative linguistic techniques, a finding that has implications for the assessment of expertise, machine learning identification of optimal practices, and construction of bedside decision support tools.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference30 articles.
1. Engbert R, et al: Tempo-induced transitions in polyrhythmic hand movements. Physical Review E. 1997, 56: 5823-5833. 10.1103/PhysRevE.56.5823.
2. Hao B: Symbolic dynamics and characterization of complexity. Physica D. 1991, 51: 161-176. 10.1016/0167-2789(91)90229-3.
3. Engbert R, et al: Symbolic dynamics of physiological synchronization: examples from bimanual movements and cardiorespiratory interaction. Nonlinear Anal Theory, Methods, and Appl. 1997, 30: 973-984. 10.1016/S0362-546X(96)00137-X.
4. Schwarz U, Benz AO, Kurths J, Witt A: Analysis of solar spike events by means of symbolic dynamics methods. Astron Astrophys. 1993, 277: 215-224.
5. Tang XZ, Tracy ER, Boozer AD, De Brauw A: Symbol sequence statistics in noisy chaotic signal reconstruction. Physical Review E. 1995, 51: 3871-3889. 10.1103/PhysRevE.51.3871.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献