Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features

Author:

Tang Buzhou,Cao Hongxin,Wu Yonghui,Jiang Min,Xu Hua

Abstract

Abstract Background Named entity recognition (NER) is an important task in clinical natural language processing (NLP) research. Machine learning (ML) based NER methods have shown good performance in recognizing entities in clinical text. Algorithms and features are two important factors that largely affect the performance of ML-based NER systems. Conditional Random Fields (CRFs), a sequential labelling algorithm, and Support Vector Machines (SVMs), which is based on large margin theory, are two typical machine learning algorithms that have been widely applied to clinical NER tasks. For features, syntactic and semantic information of context words has often been used in clinical NER systems. However, Structural Support Vector Machines (SSVMs), an algorithm that combines the advantages of both CRFs and SVMs, and word representation features, which contain word-level back-off information over large unlabelled corpus by unsupervised algorithms, have not been extensively investigated for clinical text processing. Therefore, the primary goal of this study is to evaluate the use of SSVMs and word representation features in clinical NER tasks. Methods In this study, we developed SSVMs-based NER systems to recognize clinical entities in hospital discharge summaries, using the data set from the concept extration task in the 2010 i2b2 NLP challenge. We compared the performance of CRFs and SSVMs-based NER classifiers with the same feature sets. Furthermore, we extracted two different types of word representation features (clustering-based representation features and distributional representation features) and integrated them with the SSVMs-based clinical NER system. We then reported the performance of SSVM-based NER systems with different types of word representation features. Results and discussion Using the same training (N = 27,837) and test (N = 45,009) sets in the challenge, our evaluation showed that the SSVMs-based NER systems achieved better performance than the CRFs-based systems for clinical entity recognition, when same features were used. Both types of word representation features (clustering-based and distributional representations) improved the performance of ML-based NER systems. By combining two different types of word representation features together with SSVMs, our system achieved a highest F-measure of 85.82%, which outperformed the best system reported in the challenge by 0.6%. Our results show that SSVMs is a great potential algorithm for clinical NLP research, and both types of unsupervised word representation features are beneficial to clinical NER tasks.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference36 articles.

1. Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB: A general natural-language text processor for clinical radiology. J Am Med Inform Assoc. 1994, 1: 161-174. 10.1136/jamia.1994.95236146.

2. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF: Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008, 128-144.

3. Haug PJ, Koehler S, Lau LM, Wang P, Rocha R, Huff SM: Experience with a mixed semantic/syntactic parser. Proc Annu Symp Comput Appl Med Care. 1995, 284-288.

4. Haug PJ, Christensen L, Gundersen M, Clemons B, Koehler S, Bauer K: A natural language parsing system for encoding admitting diagnoses. Proc AMIA Annu Fall Symp. 1997, 814-818.

5. Aronson AR, Lang FM: An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. 2010, 17: 229-236.

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3