Author:
Steurbaut Kristof,Latré Steven,Decruyenaere Johan,Turck Filip De
Abstract
Abstract
Background
As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems.
Methods
We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients’ data on the bedside screens.
Results
The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%.
Conclusions
We found that by controlled reduction of queries’ executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference37 articles.
1. Kephart JO, Chess DM: The vision of autonomic computing. Computer. 2003, 36: 41-50. 10.1109/MC.2003.1160055.http://dx.doi.org/10.1109/MC.2003.1160055,
2. Steurbaut K, Colpaert K, Gadeyne B, Depuydt P, Vosters P, Danneels C, Benoit D, Decruyenaere J, De Turck F: COSARA: integrated service platform for infection surveillance and antibiotic management in the ICU. J Med Syst. 2012, 36 (6): 3765-3775. 10.1007/s10916-012-9849-8.http://dx.doi.org/10.1007/s10916-012-9849-8,
3. Pour G: Prospects for expanding telehealth: multi-agent autonomic architectures. Computational Intelligence for Modelling, Control and Automation, 2006 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on. 2006, Sydney: IEEE, 130-130.http://dx.doi.org/10.1109/CIMCA.2006.166,
4. Strowes S, Badr N, Heeps S, Lupu E, Sloman M: An event service supporting Autonomic Management of Ubiquitous Systems for e-Health. 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06). 2006, Lisbon: IEEE, 22-22.http://dx.doi.org/10.1109/ICDCSW.2006.17,
5. Lupu E, Dulay N, Sloman M, Sventek J, Heeps S, Strowes S, Twidle K, Keoh SL, Filho AS: AMUSE: Autonomic Management of Ubiquitous e-Health Systems. Concurr Comput Pract Exper. 2008, 20 (3): 277-295. 10.1002/cpe.1194.http://dx.doi.org/10.1002/cpe.v20:3,
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献