The caCORE Software Development Kit: Streamlining construction of interoperable biomedical information services

Author:

Phillips Joshua,Chilukuri Ram,Fragoso Gilberto,Warzel Denise,Covitz Peter A

Abstract

Abstract Background Robust, programmatically accessible biomedical information services that syntactically and semantically interoperate with other resources are challenging to construct. Such systems require the adoption of common information models, data representations and terminology standards as well as documented application programming interfaces (APIs). The National Cancer Institute (NCI) developed the cancer common ontologic representation environment (caCORE) to provide the infrastructure necessary to achieve interoperability across the systems it develops or sponsors. The caCORE Software Development Kit (SDK) was designed to provide developers both within and outside the NCI with the tools needed to construct such interoperable software systems. Results The caCORE SDK requires a Unified Modeling Language (UML) tool to begin the development workflow with the construction of a domain information model in the form of a UML Class Diagram. Models are annotated with concepts and definitions from a description logic terminology source using the Semantic Connector component. The annotated model is registered in the Cancer Data Standards Repository (caDSR) using the UML Loader component. System software is automatically generated using the Codegen component, which produces middleware that runs on an application server. The caCORE SDK was initially tested and validated using a seven-class UML model, and has been used to generate the caCORE production system, which includes models with dozens of classes. The deployed system supports access through object-oriented APIs with consistent syntax for retrieval of any type of data object across all classes in the original UML model. The caCORE SDK is currently being used by several development teams, including by participants in the cancer biomedical informatics grid (caBIG) program, to create compatible data services. caBIG compatibility standards are based upon caCORE resources, and thus the caCORE SDK has emerged as a key enabling technology for caBIG. Conclusion The caCORE SDK substantially lowers the barrier to implementing systems that are syntactically and semantically interoperable by providing workflow and automation tools that standardize and expedite modeling, development, and deployment. It has gained acceptance among developers in the caBIG program, and is expected to provide a common mechanism for creating data service nodes on the data grid that is under development.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference28 articles.

1. Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H, Gustafson S, Buetow KH: caCORE: a common infrastructure for cancer informatics. Bioinformatics. 2003, 19: 2404-2412. 10.1093/bioinformatics/btg335.

2. ISO/IEC 11179, Information Technology -- Metadata Registries (MDR). 1999, [http://metadata-standards.org/11179/]

3. caCORE 3.0. 2005, [http://ncicb.nci.nih.gov/core]

4. The NCI Cancer Models Database. 2005, [http://cancermodels.nci.nih.gov]

5. caWorkbench - A Platform for Integrated Genomics. 2005, [http://amdec-bioinfo.cu-genome.org/html/caWorkBench3.htm]

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Biolink as a “Rosetta Stone” Between C-Path and EJP-RD Semantic Models Provides Emergent Interoperability;Journal of the Society for Clinical Data Management;2023-04-14

2. Case Study;CIN: Computers, Informatics, Nursing;2016-03

3. The Latin American laws of correct nutrition: Review, unified interpretation, model and tools;Computers in Biology and Medicine;2016-03

4. Understanding the Systems Biology of Pathogen Virulence Using Semantic Methodologies;2016 IEEE Tenth International Conference on Semantic Computing (ICSC);2016-02

5. A Survey of Cloud-Based Service Computing Solutions for Mammalian Genomics;IEEE Transactions on Services Computing;2014-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3