Author:
Safarzade Alireza,Talebi-Garakani Elahe
Abstract
Abstract
Background
Type 1 diabetes mellitus is associated with a high risk for early atherosclerotic complications. Altered lipids and lipoprotein metabolism in chronic diabetes mellitus is associated with pathogenesis of atherosclerosis and other cardiovascular diseases. The aim of this study was to investigate the effects of 4 weeks resistance training on plasma lipid profile, fatty acid binding protein (FABP) 4 and apolipoprotein (apo) A-I levels in type 1 diabetic rats.
Methods
Thirty two male Wister rats (12–14 weeks old) were randomly divided into four groups: non-diabetic control; non-diabetic trained; diabetic control; diabetic trained. The rats in training groups were subjected to a resistance training program (3 days/wk, for 4 wk) consisted of climbing a ladder carrying a load suspended from the tail.
Results
Diabetic inducing increased plasma apoA-I and decreased FABP4 levels compared with non-diabetic control group (respectively, P = 0.001 & P = 0.041). After 4 weeks’ resistance training, plasma levels of apoA-I and FABP4 in the diabetic trained rats were significantly higher compared with the diabetic control group (respectively, P = 0.003 & P = 0.017). Plasma HDL-C level in diabetic trained group was higher than diabetic control group (P = 0.048). Liver triglycerides concentrations were significantly lower in both trained (non-diabetic and diabetic) groups compared with their control groups (respectively, P = 0.041 and P = 0.002).
Conclusion
These data indicated that resistance training may be an efficient intervention strategy to increase plasma apoA-I, HDL-C and FABP4 concentrations, along with decreases liver triglycerides in streptozotocin induced diabetic rats. Further research is needed to elucidate physiological significance of circulating FABP4 levels.
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Reference45 articles.
1. Ziegler AG, Pflueger M, Winkler C, Achenbach P, Akolkar B, Krischer JP, Bonifacio E: Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children. J Autoimmun 2011, 37(1):3–7. 10.1016/j.jaut.2011.02.004
2. Morrison EY, Ragoobirsingh D, Thompson H, Fletcher C, Smith-Richardson S, McFarlane S, Pascoe K, DasGupta T, Fray JC: Phasic insulin dependent diabetes mellitus: manifestations and cellular mechanisms. J Clin Endocrinol Metab 1995, 80: 1996–2001.
3. Kelly MA, Rayner ML, Mijovic CH, Barnett AH: Molecular aspects of type 1 diabetes. Mol Pathol 2003, 56: 1–10. 10.1136/mp.56.1.1
4. Salem MA, Aboelasrar MA, Elbarbary NS, Elhilaly RA, Refaat YM: Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial. Diabetol Metab Syndr 2010, 2(1):47. 10.1186/1758-5996-2-47
5. Manninen V, Tenkanen L, Koskinien P: Joint effects of serum triglycerides and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki heart study: implications for treatment. Circulation 1992, 85: 37–45. 10.1161/01.CIR.85.1.37
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献