Hyperinsulinemia may have a protective role in the early stages of atherosclerosis in rabbit model of hypercholesterolemia

Author:

Javanmard Shaghayegh Haghjooy,Nematbakhsh Mehdi,Feghhi Azam,Dana Nasim

Abstract

Abstract Background Hypercholesterolemia causes inflammation and insulin resistance in the vasculature. Previous data suggest that vascular endothelium is a physiological target of insulin. Dyslipidemia and atherosclerosis are disorders with endothelial dysfunction that are associated with an increased production of superoxide anion, and early deficit of nitric oxide (NO) production. We examined alteration of plasma levels of insulin, C-reactive protein (CRP) and total NO metabolites (NOx), as well as fatty streak formation in the rabbit model of hypercholesterolemia. Methods White male rabbits were fed either a high-cholesterol diet (HC; 1% cholesterol, n = 6) or control diet (c, n = 6) for one month. The serum levels of Cholesterol, LDL, HDL, NOx, insulin and CRP were measured before and after study. By the end of study, rabbits' aorta was explored for fatty streak formation. Results The cholesterol-rich diet induced a significant increase in total cholesterol, LDL, and HDL as well as fatty streak lesions in HC group while there were no significant changes of these parameters in control group (p <0.05). There was significant difference in plasma levels of CRP, insulin and total NO metabolite between two groups of experiment. Negative significant correlation of CRP and insulin also was observed in HC rabbits (r = −0.99, p <0.05). Conclusion Parallel NOx and insulin increment and negative correlation of CRP and insulin in HC rabbits may be suggestive a protective role of hyperinsulinemia in early atherosclerosis.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3