Verification of a cryptic t(Y;15) translocation in a male with an apparent 45,X karyotype

Author:

Qin ShengfangORCID,Wang Xueyan,Wang Jin,Zhang Zhuo,Chen Ximin,Yin Yan,Ye Mengling,Li-Ling Jesse

Abstract

Abstract Background A rare disease is that an individual with a non-chimeric karyotype of 45,X develops into a male. We explored the genetic aetiology of an infertile male with an apparent 45,X karyotype, which was subsequently verified as cryptic translocation between chromosomes Y and 15. Methods DNA was extracted from the patient's peripheral blood. A range of genetic testing was performed, including conventional chromosomal karyotyping, short tandem repeat (STR) analysis for azoospermia factor (AZF) region, fluorescence in situ hybridization (FISH) with specific probes groups of DXZ1/DYZ3, DYZ3/D15Z1/PML and SRY/D15Z1/PML, and chromosomal microarray analysis (CMA) for genomic copy number variations (CNVs). Results The patient was found to have an apparent 45,X karyotype. STR analysis showed that he possessed a short arm of the Y chromosome, including the SRY gene; however, he was missing the long arm of the Y chromosome, including AZFa + b + c and Yqter. A FISH assay of DXZ1 and DYZ3 probes showed a green signal of the X centromere and a red of the Y centromeric signal on a D-group-sized chromosome. By FISH assaying with D15Z1 and DYZ3 probes, chromosomes 15 and Y centromeric signals appeared closely on a single chromosome, as the PML control probe ascertained. A further FISH assay with D15Z1 and SRY probes revealed a signal of the SRY gene at the end of one arm of chromosome 15. The result of the CMA indicated a deletion with an approximate size of 45.31 Mb spanning from Yq11 to Yter. Conclusion Our study enriched the karyotype-phenotype correlation of Y and 15 chromosomes translocation. It strengthened the critical roles of molecular genetic techniques in identifying the chromosomal breakpoints and regions involved. Genetic aetiology can guide early intervention in childhood and assisted reproduction in adulthood.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3