Prenatal diagnosis of Williams-Beuren syndrome by ultrasound and chromosomal microarray analysis

Author:

Huang Ruibin,Zhou Hang,Fu Fang,Li Ru,Lei Tingying,Li Yingsi,Cheng Ken,Wang You,Yang Xin,Li Lushan,Jing Xiangyi,Zhang Yongling,Li Fucheng,Li Dongzhi,Liao Can

Abstract

Abstract Background There are a few literature reports of prenatal ultrasound manifestations of Williams-Beuren syndrome. We aimed to explore the prenatal diagnosis of Williams-Beuren syndrome by ultrasound and chromosomal microarray analysis and describe the prenatal ultrasound performance of this syndrome. Methods In this retrospective study, we reported eight cases of Williams-Beuren syndrome diagnosed at our prenatal diagnostic center from 2016 to 2021. We systematically reviewed clinical data from these cases, including indications for invasive testing, sonographic findings, QF-PCR results, chromosomal microarray analysis results, and pregnancy outcomes. Results In this study, the common ultrasound features were ventricular septal defect (37.5%), intrauterine growth retardation (25%), and aortic coarctation (25%). Moreover, all patients were found to have a common deletion in the Williams-Beuren syndrome chromosome region at the 7q11.23 locus, which contained the elastin gene. Deletion sizes ranged from 1.42 to 2.07 Mb. Seven parents asked for termination of pregnancy, and one patient was lost to follow-up. Conclusions This study is the most extensive prenatal study using chromosomal microarray analysis technology for detailed molecular analysis of Williams-Beuren syndrome cases. We reported three cases combined with first-reported ultrasound manifestations. Case 1 was concomitant with multicystic dysplastic kidney and duodenal atresia combined with case 3. Notably, case 4 was combined with multiple cardiovascular malformations: Tetralogy of Fallot, right aortic arch, and supravalvar aortic stenosis. These manifestations expand the intrauterine ultrasound phenotype of Williams-Beuren syndrome in previous literature reports.

Funder

National Natural Science Foundation of China

the sub-project of the National Key R&D Program

Natural Science Foundation of Guangdong Province

science and technology planning project of Guangdong Province, China

Science and Technology Program of Guangzhou China

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3