Seed Halopriming Improves Salinity Tolerance of Some Rice Cultivars During Seedling Stage

Author:

Hidayah Anik,Nisak Rizka Rohmatin,Susanto Febri Adi,Nuringtyas Tri Rini,Yamaguchi Nobutoshi,Purwestri Yekti AsihORCID

Abstract

Abstract Background Saline land in coastal areas has great potential for crop cultivation. Improving salt tolerance in rice is a key to expanding the available area for its growth and thus improving global food security. Seed priming with salt (halopriming) can enhance plant growth and decrease saline intolerance under salt stress conditions during the subsequent seedling stage. However, there is little known about rice defense mechanisms against salinity at seedling stages after seed halopriming treatment. This study focused on the effect of seed halopriming treatment on salinity tolerance in a susceptible cultivar, IR 64, a resistant cultivar, Pokkali, and two pigmented rice cultivars, Merah Kalimantan Selatan (Merah Kalsel) and Cempo Ireng Pendek (CI Pendek). We grew these cultivars in hydroponic culture, with and without halopriming at the seed stage, under either non-salt or salt stress conditions during the seedling stage. Results The SES scoring assessment showed that the level of salinity tolerance in susceptible cultivar, IR 64, and moderate cultivar, Merah Kalsel, improved after seed halopriming treatment. Furthermore, seed halopriming improved the growth performance of IR 64 and Merah Kalsel rice seedlings. Quantitative PCR revealed that seed halopriming induced expression of the OsNHX1 and OsHKT1 genes in susceptible rice cultivar, IR 64 and Merah Kalsel thereby increasing the level of resistance to salinity. The expression levels of OsSOS1 and OsHKT1 genes in resistant cultivar, Pokkali, also increased but there was no affect on the level of salinity tolerance. On the contrary, seed halopriming decreased the expression level of OsSOS1 genes in pigmented rice cultivar, CI Pendek, but did not affect the level of salinity tolerance. The transporter gene expression induction significantly improved salinity tolerance in salinity-susceptible rice, IR 64, and moderately tolerant rice cultivar, Merah Kalsel. Induction of expression of the OsNHX1 and OsHKT1 genes in susceptible rice, IR 64, after halopriming seed treatment balances the osmotic pressure and prevents the accumulation of toxic concentrations of Na+, resulting in tolerance to salinity stress. Conclusion These results suggest that seed halopriming can improve salinity tolerance of salinity-susceptible and moderately tolerant rice cultivars.

Funder

Kementerian Riset, Teknologi dan Pendidikan Tinggi

Universitas Gadjah Mada

Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3