Cowpea seeds from plants subjected to restricted-and full-irrigation regimes show differential phytochemical activity

Author:

Miri MirRezaORCID,Ghooshchi FarshadORCID,Tohidi Moghadam Hamid RezaORCID,Larijani HamidRezaORCID,Kasraie PourangORCID

Abstract

Abstract Background Water scarcity is responsible for losses in the yield of many plants and this is expected to continue due to climate change. However, cowpea which is known for its drought tolerance, is considered as a plant without limitations to climate change. A two-year experiment was conducted to evaluate the effect of water restriction on phenolic compounds, antioxidant capacity and leaf nutrients concentration of four cultivars of cowpea at different growth stages. At second leaf stage, two irrigation regimes were initiated (Water irrigation was applied after 75% and 55% of field capacity, as well watered and drought stress treatment, respectively).Plants samples were collectedat three stages(immature pod, immature seed and dry seed stage) for total phenol and flavonoids content, ortho-diphenols andantioxidant capacity measurement and leaves sampling for nutrients concentration. Results The results indicated that polyphenolic compounds and antioxidant capacity increased under drought conditions. However, in both irrigation regimes, immature pods had the higher polyphenolic compounds, antioxidant capacity and leaf nutrients concentration rather than immature seeds and dry seeds. Among the genotypes, ILC482 revealed the highest content of total phenolics and ortho-diphenols (6.9 and 3.57 mg GA g−1dry weight, respectively). In addition, nitrogen, phosphorus and magnesium concentration of leaves were higher in ILC482 genotype. Under drought stress, ILC482 maintained higher ABTS radical scavenging capacity (0.0083 mmol Trolox g−1dry weight) compared to other genotypes. Conclusions It is suggested that drought stress affect the quality of cowpea productions through polyphenolic compounds, ABTS and DPPH radical scavenging capacity which can be used as a helpful strategy to save water in the regions where water is scare.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3