Evolutionary correlation of water-related traits between different structures of Dendrobium plants

Author:

Sun Mei,Feng Chun-Hui,Liu Zhen-Ya,Tian Kun

Abstract

Abstract Background Leaf water conservation and pseudobulb water storage are two of the strategies commonly employed by epiphytic plants to adapt to dry environments. During the flowering period, a great deal of water transpires through the flowers, which then influences water-related processes. However, there is little research on the coordinated relationship between the different structures of epiphytes. Our study explored the phylogenetic conservation and evolutionary correlations between structural traits of 8 species in the genus Dendrobium by using phylogenetic independent contrast (PIC) analysis. Results Leaf dry mass, leaf water content, leaf dry matter content, specific leaf area, stomatal density, stomatal area index, pseudobulb length, pseudobulb width, and flower dry mass show strong phylogenetic signals. Pseudobulb length is significantly positively correlated with stomatal volume but significantly negatively correlated with mesophyll thickness according to both species mean values and PIC values. Pseudobulb internode length is also positively correlated with stomatal volume but negatively correlated with stomatal density according to PIC values. Pseudobulb width is significantly positively correlated with leaf dry mass, stomatal density, stomatal area index, flower petal vein number and flower dry mass but negatively correlated with specific leaf area according to species mean values. However, these correlations are insignificant when PIC values are analyzed. Stomatal volume is positively correlated with flower dry mass, and after phylogeny is considered, this correlation is still significant. Leaf dry mass is positively correlated with flower petal vein number according to species values. Flower number per pseudobulb is negatively correlated with upper epidermal cell size according to species values but negatively correlated with stomatal area index according to PIC values. There are no correlations between pseudobulb and flower water-related traits according to PIC values. Conclusions A trade-off should exist in epiphytic plants between the two drought-tolerant strategies of pseudobulb storage and leaf water retention. Plants possessing thick blades with a few large stomata tend to use the pseudobulb water storage strategy to adapt to drought. Small flowers and low flower dry mass should be associated with the leaf water retention strategy. In addition, flowers and leaves exhibit an obvious water balance and should share common selection pressures. The present study provides a case with which to understand the coordinated adaptation of different structures in epiphytic plants.

Funder

National Natural Science Foundation of China

Applied Basic Research Foundation of Yunnan Province

Science Foundation of the Southwest Forestry University of China

Plateau Wetlands Science Innovation Team of Yunnan Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3