Fruiting phenology and nutrient content variation among sympatric figs and the ecological correlates

Author:

Huang Yu-Ting,Lee Ya-FuORCID,Kuo Yen-Min,Chang Sing-Yi,Wu Chia-Ling

Abstract

Abstract Background Figs are key resources for tropical frugivores and display unique fruiting patterns. While monoecious figs support both seeds and wasp rearing, dioecious plants perform the tasks separately and produce seeded figs in smaller asynchronous crops. Thus dioecious females, compared to monoecious figs, may afford to invest more efforts to maximize seediness, or increase fruit pulp, water content, and nutrient rewards to attract frugivores for better seed dispersal. Yet size variation among and within fig species in either breeding system may lead to complicated resource allocation. We assessed fruiting phenology, measured fig morphological traits, and analyzed fig nutrient contents of the monoecious Ficus caulocarpa and F. subpisocarpa and the dioecious F. ampelas and F. irisana in a sympatric tropical forest to investigate species differences and size effects on fig functional traits and their ecological correlates. Results All four species fruited nearly year-round. Monoecious figs’ inter-tree asynchronous crops had high peak mature crop sizes over much shorter fruiting periods than dioecious figs. Among trees, F. subpisocarpa and F. irisana were greater in fig-size and size variation, F. caulocarpa and F. ampelas comparatively displayed large variation in fig compositions. As fig size increased, water contents gradually increased in large-fig species, but seediness with a decreasing trend in small-fig species. Dioecious figs had lower pulp-seed ratio but tended to have higher water contents than monoecious figs, particularly within a similar size range. Dioecious figs also had higher carbohydrates, whereas monoecious figs contained higher fiber and lipid contents. Conclusions Our study revealed species differences in certain fig functional traits that were correlated with fig size or their breeding systems, with substantial inter-tree variation. This partially supported the predictions regarding their fruiting strategies of aiding seed dispersal by frugivores, yet suggests a fruiting plasticity of individual trees subject to environmental constraints and their biotic interactions.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference83 articles.

1. Association of Official Agricultural Chemists (AOAC) (1995) Official methods of analysis of AOAC International, 16th edn. AOAC International, Washington, DC

2. Bain A, Chou LS, Tzeng HY, Ho YC, Chiang YP et al (2014) Plasticity and diversity of the phenology of dioecious Ficus species in Taiwan. Acta Oecol 57:124–134

3. Bain A, Tzeng HY, Wu WJ, Chou LS (2015) Ficus (Moraceae) and fig wasps (Hymenoptera: Chalcidoidea) in Taiwan. Bot Stud 56:11

4. Bentos TV, Mesquita RCG, Camargo JLC, Williamson GB (2014) Seed and fruit tradeoffs—the economics of seed packaging in Amazon pioneers. Plant Ecol Divers 7:371–382

5. Berg CC, Corner EJH (2005) Moraceae (Ficus). In: Nooteboom HP (ed) Flora Malesiana, Series I—Seed plants. National Herbarium Nederlands, Leiden

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3