Effect of changing the acquisition trajectory of the 3D C-arm (CBCT) on image quality in spine surgery: experimental study using an artificial bone model

Author:

Privalov Maxim,Bullert Benno,Gierse Jula,Mandelka Eric,Vetter Sven Y.,Franke Jochen,Grützner Paul A.,Swartman Benedict

Abstract

Abstract Background Intraoperative 3D imaging using cone-beam CT (CBCT) provides improved assessment of implant position and reduction in spine surgery, is used for navigated surgical techniques, and therefore leads to improved quality of care. However, in some cases the image quality is not sufficient to correctly assess pedicle screw position and reduction, especially due to metal artifacts. The aim of this study was to investigate whether changing the acquisition trajectory of the CBCT in relation to the pedicle screw position during dorsal instrumentation of the spine can reduce metal artifacts and consequently improve image quality as well as clinical assessability on the artificial bone model. Methods An artificial bone model was instrumented with pedicle screws in the thoracic and lumbar spine region (Th10 to L5). Then, the acquisition trajectory of the CBCT (Cios Spin, Siemens, Germany) to the pedicle screws was systematically changed in 5° steps in angulation (− 30° to + 30°) and swivel (− 30° to + 30°). Subsequently, radiological evaluation was performed by three blinded, qualified raters on image quality using 9 questions (including anatomical structures, implant position, appearance of artifacts) with a score (1–5 points). For statistical evaluation, the image quality of the different acquisition trajectories was compared to the standard acquisition trajectory and checked for significant differences. Results The angulated acquisition trajectory increased the score for subjective image quality (p < 0.001) as well as the clinical assessability of pedicle screw position (p < 0.001) highly significant with particularly strong effects on subjective image quality in the vertebral pedicle region (d = 1.06). Swivel of the acquisition trajectory significantly improved all queried domains of subjective image quality (p < 0.001) as well as clinical assessability of pedicle screw position (p < 0.001). The data show that maximizing the angulation or swivel angle toward 30° provides the best tested subjective image quality. Summary Angulation and swivel of the acquisition trajectory result in a clinically relevant improvement in image quality in intraoperative 3D imaging (CBCT) during dorsal instrumentation of the spine.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3