The effects of posterior cruciate ligament rupture on the biomechanical and histological characteristics of the medial collateral ligament: an animal study

Author:

Xie Wen-qingORCID,He Miao,He Yu-qiong,Yu Deng-jie,Jin Hong-fu,Yu Fang,Li Yu-sheng

Abstract

Abstract Background To investigate the effect of complete rupture of the posterior cruciate ligament (PCL) on the biomechanics and histology of the medial collateral ligament (MCL). Materials and methods Seventy-two male rabbits were randomly divided into two groups: the ruptured group was treated with complete PCL amputation, while the intact group was only subjected to PCL exposure without amputation. Eighteen rabbits were randomly sacrificed at 8, 16, 24, and 40 weeks after the operation, and their specimens were processed for mechanical tensile testing, nano-indentation experiments, hematoxylin-eosin (HE) staining, and picrosirius-polarization staining. Results There was no significant difference in the length and maximum displacement of the MCL between the ruptured group and the intact group at each time point. The maximum load of the ruptured group was significantly smaller than that of the intact group at 40 W. The elastic modulus and micro-hardness of the ruptured group increased significantly at 24 W and decreased significantly at 40 W. At 16 W and 24 W after PCL rupture, the number of type I collagen fibers and type III collagen fibers in the MCL of the ruptured group was significantly increased compared with that of the intact group. While the type I collagen fibers of the ruptured group were significantly decreased compared with the intact group at 40 W, there was no significant difference in type III collagen fibers between the ruptured group and the intact group. Conclusion PCL rupture has no significant effect on the mechanical and histological properties of MCL in a short period of time under physiological loading, but the histological and mechanical properties of MCL decrease with time.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3