Abstract
Abstract
Background
Dual orthogonal plating of clavicle fractures may provide greater stiffness and strength than unilateral plate constructs and allow the use of lower-profile plates. We aim to biomechanically compare three clavicle plating constructs in a comminuted clavicle fracture model.
Method
Fifteen clavicle sawbones were osteotomised, simulating a comminuted midshaft fracture and allocated to either: group 1, single superior plate (3.5 mm superior plate); group 2, combination plating (3.5 mm superior plate, 2.8 mm anterior plate) and group 3, dual mini-plates (two 2.8-mm orthogonal mini-plates). Specimens were biomechanically tested under torsion and cantilever bending. Construct stiffness (Nm/degree) and load to failure (Nm) were measured.
Results
Group 2 had higher torsional (0.70 vs. 0.60 Nm/deg, p = 0.017) and cantilever bending stiffness (0.61 vs. 0.51 Nm/deg, p = 0.025) than group 1. Group 3 had lower cantilever bending stiffness (0.39 vs. 0.51 Nm/deg, p < 0.004) and load to failure (40.87 vs. 54.84 Nm, p < 0.01) than group 1. All dual plate constructs that catastrophically failed did so from fracture at the lateral ends of the plates. Single plate constructs failed due to plate bending.
Conclusion
Dual orthogonal fixation with mini-plates demonstrated lower stiffness and strength than traditional superior plating. The addition of an anterior mini-plate to a traditional superior plating improved construct stiffness and may have a role in patients seeking early return to activity.
Level of evidence
Basic science biomechanical study
Funder
Melbourne Orthopaedic Group Research Foundation
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献